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Preface

Statistics has evolved into a very important discipline that is applied in many fields.
In the modern age of computing, both statistical methodology and its applications
are expanding greatly. Among the many areas of application, we (Friis and Cher-
nick) have direct experience in the use of statistical methods to military problems,
space surveillance, experimental design, data validation, forecasting workloads,
predicting the cost and duration of insurance claims, quality assurance, the design
and analysis of clinical trials, and epidemiologic studies.

The idea for this book came to each of us independently when we taught an in-
troductory course in statistics for undergraduate health science majors at California
State University at Long Beach. Before Michael Chernick came to Long Beach,
Robert Friis first taught Health Science 403 and 503 and developed the require-
ments for the latter course in the department. The Health Science 403 course gives
the student an appreciation for statistical methods and provides a foundation for ap-
plications in medical research, health education, program evaluation, and courses in
epidemiology.

A few years later, Michael Chernick was recruited to teach Health Science 403
on a part-time basis. The text that we preferred for the course was a little too ad-
vanced; other texts that we chose, though at the right level, contained several annoy-
ing errors and did not provide some of the latest developments and real-world appli-
cations. We wanted to provide our students with an introduction to recent statistical
advances such as bootstrapping and give them real examples from our collective ex-
perience at two medical device companies, and in statistical consulting and epi-
demiologic research.

For the resulting course we chose the text with the annoying errors and included
a few excerpts from the bootstrap book by one of the authors (Chernick) as well as
reference material from a third text. A better alternative would have been a single
text that incorporates the best aspects of all three texts along with examples from
our work, so we wrote the present text, which is intended for an introductory course
in statistical methods that emphasizes the methods most commonly used in the
health sciences. The level of the course is for undergraduate health science students

XV



xvi PREFACE

(juniors or seniors) who have had high school algebra, but not necessarily calculus,
as well as for public health graduate students, nursing and medical students, and
medical residents.

A previous statistics course may be helpful but is not required. In our experience,
students who have taken a previous statistics course are probably rusty and could
benefit from the reinforcement that the present text provides.

The material in the first 11 chapters (through categorical data and chi-square
tests) can be used as the basis for a one-semester course. The instructor might even
find time to include all or part of either Chapter 12 (correlation and regression) or
Chapter 13 (one-way analysis of variance). One alternative to this suggestion is to
omit Chapter 11 and include the contents of Chapter 14 (nonparametric methods) or
15 (survival analysis). Chapter 16 on statistical software packages is a must for all
students and can be covered in one lecture at the end of the course. It is not com-
monly seen in books at this level.

This course could be taught in the suggested order with the following options:

1. Chapter 1 — Chapter 2 — Chapter 3 — Chapter 4 — Chapter 5 — Chapter 6
— Chapter 7 — Chapter 8§ — Chapter 9 — Chapter 10 — Chapter 11 —
Chapter 12 (at least 12.1-12.7) — Chapter 16.

2. Chapter 1 — Chapter 2 — Chapter 3 — Chapter 4 — Chapter 5 — Chapter 6
— Chapter 7 — Chapter 8 — Chapter 9 — Chapter 10 — Chapter 11 —
Chapter 13 — Chapter 16.

3. Chapter 1 — Chapter 2 — Chapter 3 — Chapter 4 — Chapter 5 — Chapter 6
— Chapter 7 — Chapter 8 — Chapter 9 — Chapter 10 — Chapter 12 (at least
12.1-12.7) — Chapter 14 — Chapter 16.

4. Chapter 1 — Chapter 2 — Chapter 3 — Chapter 4 — Chapter 5 — Chapter 6
— Chapter 7 — Chapter 8 — Chapter 9 — Chapter 10 — Chapter 12 (at least
12.1-12.7) — Chapter 15 — Chapter 16.

5. Chapter 1 — Chapter 2 — Chapter 3 — Chapter 4 — Chapter 5 — Chapter 6
— Chapter 7 — Chapter 8 — Chapter 9 — Chapter 10 — Chapter 13 —
Chapter 14 — Chapter 16.

6. Chapter 1 — Chapter 2 — Chapter 3 — Chapter 4 — Chapter 5 — Chapter 6
— Chapter 7 — Chapter 8 — Chapter 9 — Chapter 10 — Chapter 13 —
Chapter 15 — Chapter 16.

For graduate students who have had a good introductory statistics course, a
course could begin with Chapter 8 (estimating population means) and cover all the
material in Chapters 9-15. At Long Beach, Health Science 503 is such a course.
Topics not commonly covered in other texts include bootstrap, meta-analysis, out-
lier detection methods, pharmacoeconomics, epidemiology, logistic regression, and
Bayesian methods. Although we touch on some modern and advanced topics, the
main emphasis in the text is the classical parametric approach found in most intro-
ductory statistics courses. Some of the topics are advanced and can be skipped in an
undergraduate course without affecting understanding of the rest of the text. These
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sections are followed by an asterisk and include Sections 9.15 through 9.18 among
others.

At the beginning of each chapter, we have a statistical quote with author and ref-
erence. While the particular quote was carefully chosen to fit the theme of the chap-
ter, it was not as difficult a task as one might at first think. We were aided by the ex-
cellent dictionary of statistical terms, “Statistically Speaking,” by Gaither and
Cavazos-Gaither.

A full citation for quotes used in the book is given in the additional reading sec-
tion of Chapter 1. The sources for these quotes are playwrights, poets, physicists,
politicians, nurses, and even some statisticians. Although many of the quotes and
their authors are famous, not all are. But as Gaither and Cavazos-Gaither say,
“Some quotes are profound, others are wise, some are witty but none are frivolous.”
It is useful to go back and think about the chapter quote after reading the chapter.
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CHAPTER 1

What 1s Statistics? How Is It Applied
to the Health Sciences?

Statistics are the food of love.
—Roger Angell, Late Innings: A Baseball Companion. Chapter 1 p. 9

All of us are familiar with statistics in everyday life. Very often, we read about
sports statistics; for example, predictions of which country is favored to win the
World Cup in soccer, baseball batting averages, standings of professional football
teams, and tables of golf scores.

Other examples of statistics are the data collected by forms from the decennial
U.S. census, which attempts to enumerate every U.S. resident. The U.S. Bureau of
the Census publishes reports on the demographic characteristics of the U.S. popula-
tion. Such reports describe the overall population in terms of gender, age, and in-
come distributions; state and local reports are also available, as well as other levels
of aggregation and disaggregation. One of the interesting types of census data that
often appears in newspaper articles is regional economic status classified according
to standardized metropolitan areas. Finally, census data are instrumental in deter-
mining rates for mortality and diseases in geographic areas of the United States.

A widely recognized use of statistics is for public opinion polls that predict the
outcome of elections of government officials. For example, a local newspaper arti-
cle reports that two candidates are in a dead heat with one garnering 45% of the
votes, the other garnering 47% percent, and the remaining 8% of voters undecided.
The article also qualifies these results by reporting a margin of error of +4%; the
margin of error is an expression of the statistical uncertainty associated with the
sample. You will understand the meaning of the concept of statistical uncertainty
when we cover the binomial distribution and its associated statistical inference. We
will see that the binomial distribution is a probability model for independent repeat-
ed tests with events that have two mutually exclusive outcomes, such as “heads” or
“tails” in coin tossing experiments or “alive” or “dead” for patients in a medical
study.

Regarding the health applications of statistics, the popular media carry articles
on the latest drugs to control cancer or new vaccines for HIV. These popular articles
restate statistical findings to the lay audience based on complex analyses reported in

Introductory Biostatistics for the Health Sciences, by Michael R. Chernick 1
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.



2 WHAT IS STATISTICS? HOW IS IT APPLIED TO THE HEALTH SCIENCES?

scientific journals. In recent years, the health sciences have become increasingly
quantitative. Some of the health science disciplines that are particularly noteworthy
in their use of statistics include public health (biostatistics, epidemiology, health ed-
ucation, environmental health); medicine (biometry, preventive medicine, clinical
trials); nursing (nursing research); and health care administration (operations re-
search, needs assessment), to give a few illustrations. Not only does the study of
statistics help one to perform one’s job more effectively by providing a set of valu-
able skills, but also a knowledge of statistics helps one to be a more effective con-
sumer of the statistical information that bombards us incessantly.

1.1 DEFINITIONS OF STATISTICS AND STATISTICIANS

One use of statistics is to summarize and portray the characteristics of the contents
of a data set or to identify patterns in a data set. This field is known as descriptive
statistics or exploratory data analysis, defined as the branch of statistics that de-
scribes the contents of data or makes a picture based on the data. Sometimes re-
searchers use statistics to draw conclusions about the world or to test formal hy-
potheses. The latter application is known as inferential statistics or confirmatory
data analysis.

The field of statistics, which is relatively young, traces its origins to questions
about games of chance. The foundation of statistics rests on the theory of proba-
bility, a subject with origins many centuries ago in the mathematics of gambling.
Motivated by gambling questions, famous mathematicians such as DeMoivre and
Laplace developed probability theory. Gauss derived least squares estimation (a
technique used prominently in modern regression analysis) as a method to fit the
orbits of planets. The field of statistics was advanced in the late 19th century by
the following developments: (1) Galton’s discovery of regression (a topic we will
cover in Chapter 12); (2) Karl Pearson’s work on parametric fitting of probability
distributions (models for probability distributions that depend on a few unknown
constants that can be estimated from data); and (3) the discovery of the chi-square
approximation (an approximation to the distribution of test statistics used in con-
tingency tables and goodness of fit problems, to be covered in Chapter 11).
Applications in agriculture, biology, and genetics also motivated early statistical
work.

Subsequently, ideas of statistical inference evolved in the 20th century, with the
important notions being developed from the 1890s to the 1950s. The leaders in sta-
tistics at the beginning of the 20th century were Karl Pearson, Egon Pearson (Karl
Pearson’s son), Harold Cramer, Ronald Fisher, and Jerzy Neyman. They developed
early statistical methodology and foundational theory. Later applications arose in
engineering and the military (particularly during World War II).

Abraham Wald and his statistical research group at Columbia University devel-
oped sequential analysis (a technique that allows sampling to stop or continue based
on current results) and statistical decision theory (methods for making decisions in
the face of uncertainty based on optimizing cost or utility functions). Utility func-
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tions are functions that numerically place a value on decisions, so that choices can
be compared; the “best” decision is the one that has the highest or maximum utility.

The University of North Carolina and the University of California at Berkeley
also were major centers for statistics. Harold Hotelling and Gertrude Cox initiated
statistics departments in North Carolina. Jerzy Neyman came to California and
formed a strong statistical research center at the University of California, Berkeley.

Statistical quality control developed at Bell Labs, starting with the work of Wal-
ter Shewhart. An American statistician, Ed Deming, took the statistical quality con-
trol techniques to Japan along with his management philosophy; in Japan, he nur-
tured a high standard of excellence, which currently is being emulated successfully
in the United States.

John Tukey at Princeton University and Bell Labs developed many important
statistical ideas, including:

® Methods of spectral estimation (a decomposition of time dependent data in
terms of trigonometric functions with different frequencies) in time series

® The fast Fourier transform (also used in the spectral analysis of time series)

® Robust estimation procedures (methods of estimation that work well for a va-
riety of probability distributions)

® The concept of exploratory data analysis

® Many of the tools for exploratory analysis, including: (a) PRIMY, an early
graphical tool for rotating high-dimensional data on a computer screen. By
high-dimensional data we mean that the number of variables that we are con-
sidering is large (even a total of five to nine variables can be considered large
when we are looking for complex relationships). (b) box-and-whisker and
stem-and-leaf plots (to be covered in Chapter 3).

Given the widespread applications of statistics, it is not surprising that statisti-
cians can be found at all major universities in a variety of departments including
statistics, biostatistics, mathematics, public health, management science, econom-
ics, and the social sciences. The federal government employs statisticians at the Na-
tional Institute of Standards and Technology, the U.S. Bureau of the Census, the
U.S. Department of Energy, the Bureau of Labor Statistics, the U.S. Food and Drug
Administration, and the National Laboratories, among other agencies. In the private
sector, statisticians are prominent in research groups at AT&T, General Electric,
General Motors, and many Fortune 500 companies, particularly in medical device
and pharmaceutical companies.

1.2 WHY STUDY STATISTICS?

Technological advances continually make new disease prevention and treatment
possibilities available for health care. Consequently, a substantial body of medical
research explores alternative methods for treating diseases or injuries. Because out-
comes vary from one patient to another, researchers use statistical methods to quan-
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tify uncertainty in the outcomes, summarize and make sense of data, and compare
the effectiveness of different treatments. Federal government agencies and private
companies rely heavily on statisticians’ input.

The U.S. Food and Drug Administration (FDA) requires manufacturers of new
drugs and medical devices to demonstrate the effectiveness and safety of their prod-
ucts when compared to current alternative treatments and devices. Because this
process requires a great deal of statistical work, these industries employ many sta-
tisticians to design studies and analyze the results. Controlled clinical trials, de-
scribed later in this chapter, provide a commonly used method for assessing product
efficacy and safety. These trials are conducted to meet regulatory requirements for
the market release of the products. The FDA considers such trials to be the gold
standard among the study approaches that we will cover in this text.

Medical device and pharmaceutical company employees—clinical investigators
and managers, quality engineers, research and development engineers, clinical re-
search associates, database managers, as well as professional statisticians—need to
have basic statistical knowledge and an understanding of statistical terms. When
you consider the following situations that actually occurred at a medical device
company, you will understand why a basic knowledge of statistical methods and
terminology is important.

Situation 1: You are the clinical coordinator for a clinical trial of an ablation
catheter (a catheter that is placed in the heart to burn tissue in order to eliminate an
electrical circuit that causes an arrhythmia). You are enrolling patients at five sites
and want to add a new site. In order to add a new site, a local review board called an
institution review board (IRB) must review and approve your trial protocol.

A member of the board asks you what your stopping rule is. You do not know
what a stopping rule is and cannot answer the question. Even worse, you do not
even know who can help you. If you had taken a statistics course, you might know
that many trials are constructed using group sequential statistical methods. These
methods allow for the data to be compared at various times during the trial. Thresh-
olds that vary from stage to stage determine whether the trial can be stopped early
to declare the device safe and/or effective. They also enable the company to recog-
nize the futility of continuing the trial (for example, because of safety concerns or
because it is clear that the device will not meet the requirements for efficacy). The
sequence of such thresholds is called the stopping rule.

The IRB has taken for granted that you know this terminology. However, group
sequential methods are more common in pharmaceutical trials than in medical de-
vice trials. The correct answer to the IRB is that you are running a fixed-sample-
size trial and, therefore, no stopping rule is in effect. After studying the material in
this book, you will be aware of what group sequential methods are and know what
stopping rules are.

Situation 2: As a regulatory affairs associate at a medical device company that
has completed a clinical trial of an ablation catheter, you have submitted a regulato-
ry report called a premarket approval application (PMA). In the PMA, your statisti-
cian has provided statistical analyses for the study endpoints (performance mea-
sures used to demonstrate safety or effectiveness).
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The reviewers at the Food and Drug Administration (FDA) send you a letter with
questions and concerns about deficiencies that must be addressed before they will
approve the device for marketing. One of the questions is: “Why did you use the
Greenwood approximation instead of Peto’s method?” The FDA prefers Peto’s
method and would like you to compute the results by using that method.

You recognize that the foregoing example involves a statistical question but
have no idea what the Greenwood and Peto methods are. You consult your statisti-
cian, who tells you that she conducted a survival analysis (a study of treatment fail-
ure as a function of time across the patients enrolled in the study). In the survival
analysis, time to recurrence of the arrhythmia is recorded for each patient. As most
patients never have a recurrence, they are treated as having a right-censored recur-
rence time (their time to event is cut off at the end of the trial or the time of the
analysis).

Based on the data, a Kaplan—Meier curve, the common nonparametric estimate
for the survival curve, is generated. The survival curve provides the probability that
a patient will not have a recurrence by time ¢. It is plotted as a function of # and de-
creases from 1 at time 0. The Kaplan—Meier curve is an estimate of this survival
curve based on the trial data (survival analysis is covered in Chapter 15).

You will learn that the uncertainty in the Kaplan—Meier curve, a statistical esti-
mate, can be quantified in a confidence interval (covered in general terms in Chap-
ter 8). The Greenwood and Peto methods are two approximate methods for placing
confidence intervals on the survival curve at specified times . Statistical research
has shown that the Greenwood method often provides a lower confidence bound es-
timate that is too high. In contrast, the Peto method gives a lower and possibly bet-
ter estimate for the lower bound, particularly when ¢ is large. The FDA prefers the
bound obtained by the Peto method because for large ¢, most of the cases have been
right-censored. However, both methods are approximations and neither one is “cor-
rect.”

From the present text, you will learn about confidence bounds and survival dis-
tributions; eventually, you will be able to compute both the Greenwood and Peto
bounds. (You already know enough to respond to the FDA question, “Why did you
use the Greenwood approximation . . . 7”” by asking a statistician to provide the Peto
lower bound in addition to the Greenwood.)

Situation 3: Again, you are a regulatory affairs associate and are reviewing an
FDA letter about a PMA submission. The FDA wants to know if you can present
your results on the primary endpoints in terms of confidence intervals instead of
just reporting p-values (the p-value provides a summary of the strength of evidence
against the null hypothesis and will be covered in Chapter 9). Again, you recognize
that the FDA’s question involves statistical issues.

When you ask for help, the statistician tells you that the p-value is a summary of
the results of a hypothesis test. Because the statistician is familiar with the test and
the value of the test statistic, he can use the critical value(s) for the test to generate a
confidence bound or confidence bounds for the hypothesized parameter value. Con-
sequently, you can tell the FDA that you are able to provide them with the informa-
tion they want.
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The present text will teach you about the one-to-one correspondence between
hypothesis tests and confidence intervals (Chapter 9) so that you can construct a hy-
pothesis test based on a given confidence interval or construct the confidence
bounds based on the results of the hypothesis test.

Situation 4: You are a clinical research associate (CRA) in the middle of a clini-
cal trial. Based on data provided by your statistics group, you are able to change
your chronic endpoint from a six-month follow-up result to a three-month follow-
up result. This change is exciting because it may mean that you can finish the trial
much sooner than you anticipated. However, there is a problem: the original proto-
col required follow-ups only at two weeks and at six months after the procedure,
whereas a three-month follow-up was optional.

Some of the sites opt not to have a three-month follow-up. Your clinical manag-
er wants you to ask the investigators to have the patients who are past three months
postprocedure but not near the six-month follow-up come in for an unscheduled fol-
low-up. When the investigator and a nurse associate hear about this request, they
are reluctant to go to the trouble of bringing in the patients. How do you convince
them to comply?

You ask your statistician to explain the need for an unscheduled follow-up. She
says that the trial started with a six-month endpoint because the FDA viewed six
months to be a sufficient duration for the trial. However, an investigation of Ka-
plan—Meier curves for similar studies showed that there was very little decrease in
the survival probability in the period from three to six months. This finding con-
vinced the FDA that the three-month endpoint would provide sufficient information
to determine the long-term survival probability.

The statistician tells the investigator that we could not have put this requirement
into the original protocol because the information to convince the FDA did not exist
then. However, now that the FDA has changed its position, we must have the three-
month information on as many patients as possible. By going to the trouble of
bringing in these patients, we will obtain the information that we need for an early
approval. The early approval will allow the company to market the product much
faster and allow the site to use the device sooner. As you learn about survival curves
in this text, you will appreciate how greatly survival analyses impact the success of
a clinical trial.

Situation 5: You are the Vice President of the Clinical and Regulatory Affairs
Department at a medical device company. Your company hired a contract research
organization (CRO) to run a randomized controlled clinical trial (described in Sec-
tion 1.3.5, Clinical Trials). A CRO was selected in order to maintain complete ob-
jectivity and to guarantee that the trial would remain blinded throughout. Blinding
is a procedure of coding the allocation of patients so that neither they nor the inves-
tigators know to which treatment the patients were assigned in the trial.

You will learn that blinding is important to prevent bias in the study. The trial
has been running for two years. You have no idea how your product is doing. The
CRO is nearing completion of the analysis and is getting ready to present the report
and unblind the study (i.e., let others know the treatment group assignments for the
patients). You are very anxious to know if the trial will be successful. A successful
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trial will provide a big financial boost for your company, which will be able to mar-
ket this device that provides a new method of treatment for a particular type of heart
disease.

The CRO shows you their report because you are the only one allowed to see it
until the announcement, two weeks hence. Your company’s two expert statisticians
are not even allowed to see the report. You have limited statistical knowledge, but
you are accustomed to seeing results reported in terms of p-values for tests. You see
a demographic analysis comparing patients by age and gender in the treatment and
the control groups. As the p-value is 0.56, you are alarmed, for you are used to see-
ing small p-values. You know that, generally, the FDA requires p-values below
0.05 for acceptance of a device for marketing. There is nothing you can do but wor-
ry for the next two weeks.

If you had a little more statistical training or if you had a chance to speak to your
statistician, you may have heard the following: Generally, hypothesis tests are set
up so that the null hypothesis states that there is no difference among groups; you
want to reject the null hypothesis to show that results are better for the treatment
group than for the control group. A low p-value (0.05 is usually the threshold) indi-
cates that the results favor the treatment group in comparison to the control group.
Conversely, a high p-value (above 0.05) indicates no significant improvement.

However, for the demographic analysis, we want to show no difference in out-
come between groups by demographic characteristics. We want the difference in
the value for primary endpoints (in this case, length of time the patient is able to ex-
ercise on a treadmill three months after the procedure) to be attributed to a differ-
ence in treatment. If there are demographic differences between groups, we cannot
determine whether a statistically significant difference in performance between the
two groups is attributable to the device being tested or simply to the demographic
differences. So when comparing demographics, we are not interested in rejecting
the null hypothesis; therefore, high p-values provide good news for us.

From the preceding situations, you can see that many employees at medical de-
vice companies who are not statisticians have to deal with statistical issues and ter-
minology frequently in their everyday work. As students in the health sciences, you
may aspire to career positions that involve responsibilities and issues that are simi-
lar to those in the foregoing examples. Also, the medical literature is replete with
research articles that include statistical analyses or at least provide p-values for cer-
tain hypothesis tests. If you need to study the medical literature, you will need to
evaluate some of these statistical results. This text will help you become statistical-
ly literate. You will have a basic understanding of statistical techniques and the as-
sumptions necessary for their application.

We noted previously that in recent years, medically related research papers have
included more and increasingly sophisticated statistical analyses. However, some
medical journals have tended to have a poor track record, publishing papers that
contain various errors in their statistical applications. See Altman (1991), Chapter
16, for examples.

Another group that requires statistical expertise in many situations is comprised
of public health workers. For example, they may be asked to investigate a disease
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outbreak (such as a food-borne disease outbreak). There are five steps (using statis-
tics) required to investigate the outbreak: First, collect information about the per-
sons involved in the outbreak, deciding which types of data are most appropriate.
Second, identify possible sources of the outbreak, for example, contaminated or im-
properly stored food or unsafe food handling practices. Third, formulate hypotheses
about modes of disease transmission. Fourth, from the collected data, develop a de-
scriptive display of quantitative information (see Chapter 3), e.g., bar charts of
cases of occurrence by day of outbreak. Fifth, assess the risks associated with cer-
tain types of exposure (see Chapter 11).

Health education is another public health discipline that relies on statistics. A
central concern of health education is program evaluation, which is necessary to
demonstrate program efficacy. In conjunction with program evaluation, health edu-
cators decide on alternative statistical tests, including (but not limited to) indepen-
dent groups or paired groups (paired #-tests or nonparametric analogues) chi-square
tests, or one-way analyses of variance. In designing a needs assessment protocol,
health educators conduct a power analysis for sample surveys. Not to be minimized
is the need to be familiar with the plethora of statistical techniques employed in
contemporary health education and public health literature.

The field of statistics not only has gained importance in medicine and closely re-
lated disciplines, as we have described in the preceding examples, but it has become
the method of choice in almost all scientific investigations. Salsburg’s recent book
“The Lady Tasting Tea” (Salsburg, 2001) explains eloquently why this is so and
provides a glimpse at the development of statistical methodology in the 20th centu-
ry, along with the many famous probabilists and statisticians who developed the
discipline during that period. Salsburg’s book also provides insight as to why (pos-
sibly in some changing form) the discipline will continue to be important in the 21st
century. Random variation just will not go away, even though deterministic theories
(i.e., those not based on chance factors) continue to develop.

The examples described in this section are intended to give you an overview of
the importance of statistics in all areas of medically related disciplines. The exam-
ples also highlight why all employees in the medical field can benefit from a basic
understanding of statistics. However, in certain positions a deeper knowledge of
statistics is required. These examples were intended to give you an understanding of
the importance of statistics in realistic situations. We have pointed out in each situ-
ation the specific chapters in which you will learn more details about the relevant
statistical topics. At this point, you are not expected to understand all the details re-
garding the examples, but by the completion of the text, you will be able to review
and reread them in order to develop a deeper appreciation of the issues involved.

1.3 TYPES OF STUDIES

Statisticians use data from a variety of sources: observational data are from cross-
sectional, retrospective, and prospective studies; experimental data are derived from
planned experiments and clinical trials. What are some illustrations of the types of
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data from each of these sources? Sometimes, observational data have been collected
from naturally or routinely occurring situations. Other times, they are collected for
administrative purposes; examples are data from medical records, government
agencies, or surveys. Experimental data include the results that have been collected
from formal intervention studies or clinical trials; some examples are survival data,
the proportion of patients who recover from a medical procedure, and relapse rates
after taking a new medication.

Most study designs contain one or more outcome variables that are specified ex-
plicitly. (Sometimes, a study design may not have an explicitly defined outcome
variable but, rather, the outcome is implicit; however, the use of an implicit out-
come variable is not a desirable practice.) Study outcome variables may range from
counts of the number of cases of illness or the number of deaths to responses to an
attitude questionnaire. In some disciplines, outcome variables are called dependent
variables. The researcher may wish to relate these outcomes to disease risk factors
such as exposure to toxic chemicals, electromagnetic radiation, or particular med-
ications, or to some other factor that is thought to be associated with a particular
health outcome.

In addition to outcome variables, study designs assess exposure factors. For ex-
ample, exposure factors may include toxic chemicals and substances, ionizing radi-
ation, and air pollution. Other types of exposure factors, more formally known as
risk factors, include a lack of exercise, a high-fat diet, and smoking. In other disci-
plines, exposure factors sometimes are called independent variables. However, epi-
demiologists prefer to use the term exposure factor.

One important issue pertains to the time frame for collection of data, whether in-
formation about exposure and outcome factors is referenced about a single point in
time or whether it involves looking backward or forward in time. These distinctions
are important because, as we will learn, they affect both the types of analyses that
we can perform and our confidence about inferences that we can make from the
analyses. The following illustrations will clarify this issue.

1.3.1 Surveys and Cross-Sectional Studies

A cross-sectional study is referenced about a single point in time—now. That is, the
reference point for both the exposure and outcome variables is the present time.
Most surveys represent cross-sectional studies. For example, researchers who want
to know about the present health characteristics of a population might administer a
survey to answer the following kinds of questions: How many students smoke at a
college campus? Do men and women differ in their current levels of smoking?
Other varieties of surveys might ask subjects for self-reports of health character-
istics and then link the responses to physical health assessments. Survey research
might ascertain whether current weight is related to systolic blood pressure levels or
whether subgroups of populations differ from one another in health characteristics;
e.g., do Latinos in comparison to non-Latinos differ in rates of diabetes? Thus, it is
apparent that although the term “cross-sectional study” may seem confusing at first,
it is actually quite simple. Cross-sectional studies, which typically involve descrip-
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tive statistics, are useful for generating hypotheses that may be explored in future
research. These studies are not appropriate for making cause and effect assertions.
Examples of statistical methods appropriate for analysis of cross-sectional data in-
clude cross-tabulations, correlation and regression, and tests of differences between
or among groups as long as time is not an important factor in the inference.

1.3.2 Retrospective Studies

A retrospective study is one in which the focus upon the risk factor or exposure fac-
tor for the outcome is in the past. One type of retrospective study is the case-control
study, in which patients who have a disease of interest to the researchers are asked
about their prior exposure to a hypothesized risk factor for the disease. These pa-
tients represent the case data that are matched to patients without the disease but
with similar demographic characteristics.

Health researchers employ case-control studies frequently when rapid and inex-
pensive answers to a question are required. Investigations of food-borne illness re-
quire a speedy response to stop the outbreak. In the hypothetical investigation of a
suspected outbreak of E. coli-associated food-borne illness, public health officials
would try to identify all of the cases of illness that occurred in the outbreak and ad-
minister a standardized questionnaire to the victims in order to determine which
foods they consumed. In case-control studies, statisticians evaluate associations and
learn about risk factors and health outcomes through the use of odds ratios (see
Chapter 11).

1.3.3 Prospective Studies

Prospective studies follow subjects from the present into the future. In the health
sciences, one example is called a prospective cohort study, which begins with indi-
viduals who are free from disease, but who have an exposure factor. An example
would be a study that follows a group of young persons who are initiating smoking
and who are free from tobacco-related diseases. Researchers might follow these
youths into the future in order to note their development of lung cancer or emphyse-
ma. Because many chronic, noninfectious diseases have a long latency period and
low incidence (occurrence of new cases) in the population, cohort studies are time-
consuming and expensive in comparison to other methodologies. In cohort studies,
epidemiologists often use relative risk (RR) as a measure of association between
risk exposure and disease. The term relative risk is explained in Chapter 11.

1.3.4 Experimental Studies and Quality Control

An experimental study is one in which there is a study group and a control group as
well as an independent (causal) variable and a dependent (outcome) variable. Sub-
jects who participate in the study are assigned randomly to either the study or con-
trol conditions. The investigator manipulates the independent variable and observes
its influence upon the dependent variable. This study design is similar to those that
the reader may have heard about in a psychology course. Experimental designs also
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are related to clinical trials, which were described earlier in this chapter.

Experimental studies are used extensively in product quality control. The manu-
facturing and agricultural industries have pioneered the application of statistical de-
sign methods to the production of first-rate, competitive products. These methods
also are used for continuous process improvement. The following statistical meth-
ods have been the key tools in this success:

® Design of Experiments (DOE, methods for varying conditions to look at the
effects of certain variables on the output)

® Response Surface Methodology (RSM, methods for changing the experimen-
tal conditions to move quickly toward optimal experimental conditions)

e Statistical Process Control (SPC, procedures that involve the plotting of data
over time to track performance and identify changes that indicate possible
problems)

® Evolutionary Operation (EVOP, methods to adjust processes to reach optimal
conditions as processes change or evolve over time)

Data from such experiments are often analyzed using linear or nonlinear statisti-
cal models. The simplest of these models (simple linear regression and the one-way
analysis of variance) are covered in Chapters 12 and 13, respectively, of this text.
However, we do not cover the more general models, nor do we cover the methods
of experimental design and quality control. Good references for DOE are Mont-
gomery (1997) and Wu and Hamada (2000). Montgomery (1997) also covers
EVOP. Myers and Montgomery (1995) is a good source for information on RSM.
Ryan (1989) and Vardeman and Jobe (1999) are good sources for SPC and other
quality assurance methods.

In the mid-1920s, quality control methods in the United States began with the
work of Shewhart at Bell Laboratories and continued through the 1960s. In general,
the concept of quality control involves a method for maximizing the quality of
goods produced or a manufacturing process. Quality control entails planning, ongo-
ing inspections, and taking corrective actions, if necessary, to maintain high stan-
dards. This methodology is applicable to many settings that need to maintain high
operating standards. For example, the U.S. space program depends on highly redun-
dant systems that use the best concepts from the field of reliability, an aspect of
quality control.

Somehow, the U.S. manufacturing industry in the 1970s lost its knowledge of
quality controls. The Japanese learned these ideas from Ed Deming and others and
quickly surpassed the U.S. in quality production, especially in the automobile in-
dustry in the late 1980s. Recently, by incorporating DOE and SPC methods, US
manufacturing has made a comeback. Many companies have made dramatic im-
provements in their production processes through a formalized training program
called Six Sigma. A detailed picture of all these quality control methods can be
found in Juran and Godfrey (1999).

Quality control is important in engineering and manufacturing, but why would a
student in the health sciences be interested in it? One answer comes from the grow-
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ing medical device industry. Companies now produce catheters that can be used for
ablation of arrhythmias and diagnosis of heart ailments and also experimentally for
injection of drugs to improve the cardiovascular system of a patient. Firms also pro-
duce stents for angioplasty, implantable pacemakers to correct bradycardia (slow
heart rate that causes fatigue and can lead to fainting), and implantable defibrillators
that can prevent ventricular fibrillation, which can lead to sudden death. These de-
vices already have had a big impact on improving and prolonging life. Their use
and value to the health care industry will continue to grow.

Because these medical devices can be critical to the lives of patients, their safety
and effectiveness must be demonstrated to regulatory bodies. In the United States,
the governing regulatory body is the FDA. Profitable marketing of a device general-
ly occurs after a company has conducted a successful clinical trial of the device.
These devices must be reliable; quality control procedures are necessary to ensure
that the manufacturing process continues to work properly.

Similar arguments can be made for the control of processes at pharmaceutical
plants, which produce prescription drugs that are important for maintaining the
health of patients under treatment. Tablets, serums, and other drug regimens must
be of consistently high quality and contain the correct dose as described on the la-
bel.

1.3.5 Clinical Trials

A clinical trial is defined as “. . . an experiment performed by a health care organi-
zation or professional to evaluate the effect of an intervention or treatment against a
control in a clinical environment. It is a prospective study to identify outcome mea-
sures that are influenced by the intervention. A clinical trial is designed to maintain
health, prevent diseases, or treat diseased subjects. The safety, efficacy, pharmaco-
logical, pharmacokinetic, quality-of-life, health economics, or biochemical effects
are measured in a clinical trial.” (Chow, 2000, p. 110).

Clinical trials are conducted with human subjects (who are usually patients). Be-
fore the patients can be enrolled in the trial, they must be informed about the per-
ceived benefits and risks. The process of apprising the patients about benefits and
risks is accomplished by using an informed consent form that the patient must sign.
Each year in the United States, many companies perform clinical trials. The impe-
tus for these trials is the development of new drugs or medical devices that the com-
panies wish to bring to market. A primary objective of these clinical trials is to
demonstrate the safety and effectiveness of the products to the FDA.

Clinical trials take many forms. In a randomized, controlled clinical trial, pa-
tients are randomized into treatment and control groups. Sometimes, only a single
treatment group and a historical control group are used. This procedure may be fol-
lowed when the use of a concurrent control group would be expensive or would ex-
pose patients in the control group to undue risks. In the medical device industry, the
control also can be replaced by an objective performance criterion (OPC). Estab-
lished standards for current forms of available treatments can be used to determine
these OPCs. Patients who undergo the current forms of available treatment thus
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constitute a control group. Generally, a large amount of historical data is needed to
establish an OPC.

Concurrent randomized controls are often preferred to historical controls be-
cause the investigators want to have a sound basis for attributing observed differ-
ences between the treatment and control groups to treatment effects. If the trial is
conducted without concurrent randomized controls, statisticians can argue that any
differences shown could be due to differences among the study patient populations
rather than to differences in the treatment. As an example, in a hypothetical study
conducted in Southern California, a suitable historical control group might consist
of Hispanic women. However, if the treatment were intended for males as well as
females (including both genders from many other races), a historical control group
comprised of Hispanic women would be inappropriate. In addition, if we then were
to use a diverse population of males and females of all races for the treatment group
only, how would we know that any observed effect was due to the treatment and not
simply to the fact that males respond differently from females or that racial differ-
ences are playing a role in the response? Thus, the use of a concurrent control group
would overcome the difficulties produced by a historical control group.

In addition, in order to avoid potential bias, patients are often blinded as to study
conditions (i.e., treatment or control group), when such blinding is possible. It is
also preferable to blind the investigator to the study conditions to prevent bias that
could invalidate the study conclusions. When both the investigator and the patient
are blinded, the trial is called double-blinded. Double-blinding often is possible in
drug treatment studies but rarely is possible in medical device trials. In device trials,
the patient sometimes can be blinded but the attending physician cannot be.

To illustrate the scientific value of randomized, blinded, controlled, clinical tri-
als, we will describe a real trial that was sponsored by a medical device company
that produces and markets catheters. The trial was designed to determine the safety
and efficacy of direct myocardial revascularization (DMR). DMR is a clinical pro-
cedure designed to improve cardiac circulation (also called perfusion). The medical
procedure involves the placement of a catheter in the patient’s heart. A small laser
on the tip of the catheter is fired to produce channels in the heart muscle that theo-
retically promote cardiac perfusion. The end result should be improved heart func-
tion in those patients who are suffering from severe symptomatic coronary artery
disease.

In order to determine if this theory works in practice, clinical trials were re-
quired. Some studies were conducted in which patients were given treadmill tests
before and after treatment in order to demonstrate increased cardiac output. Other
measures of improved heart function also were considered in these studies. Results
indicated promise for the treatment.

However, critics charged that because these trials did not have randomized con-
trols, a placebo effect (i.e., patients improve because of a perceived benefit from
knowing that they received a treatment) could not be ruled out. In the DMR DI-
RECT trial, patients were randomized to a treatment group and a sham control
group. The sham is a procedure used to keep the patient blinded to the treatment. In
all cases the laser catheter was placed in the heart. The laser was fired in the patients
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randomized to the DMR treatment group but not in the patients randomized to the
control group. This was a single-blinded trial; i.e., none of the patients knew
whether or not they received the treatment. Obviously, the physician conducting the
procedure had to know which patients were in the treatment and control groups.
The patients, who were advised of the possibility of the sham treatment in the in-
formed consent form, of course received standard care for their illness.

At the follow-up tests, everyone involved, including the physicians, was blinded
to the group associated with the laser treatment. For a certain period after the data
were analyzed, the results were known only to the independent group of statisti-
cians who had designed the trial and then analyzed the data.

These results were released and made public in October 2000. Quoting the press
release, “Preliminary analysis of the data shows that patients who received this
laser-based therapy did not experience a statistically significant increase in exercise
times or a decrease in the frequency and severity of angina versus the control group
of patients who were treated medically. An improvement across all study groups
may suggest a possible placebo effect.”

As a result of this trial, the potential benefit of DMR was found not to be signifi-
cant and not worth the added risk to the patient. Companies and physicians looking
for effective treatments for these patients must now consider alternative therapies.
The trial saved the sponsor, its competitors, the patients, and the physicians from
further use of an ineffective and highly invasive treatment.

1.3.6 Epidemiological Studies

As seen in the foregoing section, clinical trials illustrate one field that requires
much biostatistical expertise. Epidemiology is another such field. Epidemiology is
defined as the study of the distribution and determinants of health and disease in
populations.

Although experimental methods including clinical trials are used in epidemiolo-
gy, a major group of epidemiological studies use observational techniques that were
formalized during the mid-19th century. In his classic work, John Snow reported on
attempts to investigate the source of a cholera outbreak that plagued London in
1849. Snow hypothesized that the outbreak was associated with polluted water
drawn from the Thames River. Both the Lambeth Company and the Southwark and
Vauxhall Company provided water inside the city limits of London. At first, both
the Lambeth Company and the Southwark and Vauxhall Company took water from
a heavily polluted section of the Thames River.

The Broad Street area of London provided an excellent opportunity to test this
hypothesis because households in the same neighborhood were served by interdigi-
tating water supplies from the two different companies. That is, households in the
same geographic area (even adjacent houses) received water from the two compa-
nies. This observation by Snow made it possible to link cholera outbreaks in a par-
ticular household with one of the two water sources.

Subsequently, the Lambeth Company relocated its water source to a less conta-
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minated section of the river. During the cholera outbreak of 1854, Snow demon-
strated that a much greater proportion of residents who used water from the more
polluted source contracted cholera than those who used water from the less polluted
source. Snow’s method, still in use today, came to be known as a natural experi-
ment [see Friis and Sellers (1999) for more details].

Snow’s investigation of the cholera outbreak illustrates one of the main ap-
proaches of epidemiology—use of observational studies. These observational study
designs encompass two major categories: descriptive and analytic. Descriptive
studies attempt to classify the extent and distribution of disease in populations. In
contrast, analytic studies are concerned with causes of disease. Descriptive studies
rely on a variety of techniques: (1) case reports, (2) astute clinical observations, and
(3) use of statistical methods of description, e.g., showing how disease frequency
varies in the population according to demographic variables such as age, sex, race,
and socioeconomic status.

For example; Morbidity and Mortality Reports, published by the Centers for
Disease Control (CDC) in Atlanta, periodically issues data on persons diagnosed
with acquired immune deficiency syndrome (AIDS) classified according to demo-
graphic subgroups within the United State. With respect to HIV and AIDS, these
descriptive studies are vitally important for showing the nation’s progress in con-
trolling the AIDS epidemic, identifying groups at high risk, and suggesting needed
health care services and interventions. Descriptive studies also set the stage for ana-
lytic studies by suggesting hypotheses to be explored in further research.

Snow’s natural experiment provides an excellent example of both descriptive
and analytic methodology. The reader can probably think of many other examples
that would interest statisticians. Many natural experiments are the consequences of
government policies. To illustrate, California has introduced many innovative laws
to control tobacco use. One of these, the Smoke-free Bars Law, has provided an ex-
cellent opportunity to investigate the health effects of prohibiting smoking in alco-
hol-serving establishments. Natural experiments create a scenario for researchers to
test causal hypotheses. Examples of analytic research designs include ecological,
case-control, and cohort studies.

We previously defined case-control (Section 1.3.2, Retrospective Studies) and
cohort studies (Section 1.3.3, Prospective Studies). Case-control studies have been
used in such diverse naturally occurring situations as exploring the causes of toxic
shock syndrome among tampon users and investigating diethylstibesterol as a pos-
sible cause of birth defects. Cohort studies such as the famous Framingham Study
have been used in the investigation of cardiovascular risk factors.

Finally, ecologic studies involve the study of groups, rather than the individual,
as the unit of analysis. Examples are comparisons of national variations in coronary
heart disease mortality or variations in mortality at the census tract level. In the for-
mer example, a country is the “group,” whereas in the latter, a census tract is the
group. Ecologic studies have linked high fat diets to high levels of coronary heart
disease mortality. Other ecologic studies have suggested that congenital malforma-
tions may be associated with concentrations of hazardous wastes.
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1.3.7 Pharmacoeconomic Studies and Quality of Life

Pharmacoeconomics examines the tradeoff of cost versus benefit for new drugs.
The high cost of medical care has caused HMOs, other health insurers, and even
some regulatory bodies to consider the economic aspects of drug development and
marketing. Cost control became an important discipline in the development and
marketing of drugs in the 1990s and will continue to grow in importance during the
current century. Pharmaceutical companies are becoming increasingly aware of the
need to gain expertise in pharmacoeconomics as they start to implement cost con-
trol techniques in clinical trials as part of winning regulatory approvals and, more
importantly, convincing pharmacies of the value of stocking their products. The
ever-increasing cost of medical care has led manufacturers of medical devices and
pharmaceuticals to recognize the need to evaluate products in terms of cost versus
effectiveness in addition to the usual efficacy and safety criteria that are standard
for regulatory approvals. The regulatory authorities in many countries also see the
need for these studies.

Predicting the cost versus benefit of a newly developed drug involves an element
of uncertainty. Consequently, statistical methods play an important role in such
analyses. Currently, there are many articles and books on projecting the costs ver-
sus benefits in new drug development. A good starting point is Bootman (1996).
One of the interesting and important messages from Bootman’s book is the need to
consider a perspective for the analysis. The perceptions of cost/benefit tradeoffs dif-
fer depending on whether they are seen from the patient’s perspective, the physi-
cian’s perspective, society’s perspective, an HMO’s perspective, or a pharmacy’s
perspective. The perspective has an important effect on which drug-related costs
should be included, what comparisons should be made between alternative formula-
tions, and which type of analysis is needed. Further discussion of cost/benefit trade-
offs is beyond the scope of this text. Nevertheless, it is important for health scien-
tists to be aware of such tradeoffs.

Quality of life has played an increasing role in the study of medical treatments
for patients. Physicians, medical device companies, and pharmaceutical firms have
started to recognize that the patient’s own feeling of well-being after a treatment
is as important or more important than some clinically measurable efficacy para-
meters. Also, in comparing alternative treatments, providers need to realize that
many products are basically equivalent in terms of the traditional safety and effi-
cacy measures and that what might set one treatment apart from the others could
be an increase in the quality of a patient’s life. In the medical research literature,
you will see many terms that all basically deal with the patients’ view of the qual-
ity of their life. These terms and acronyms are quality of life (QoL), health relat-
ed quality of life (HRQoL), outcomes research, and patient reported outcomes
(PRO).

Quality of life usually is measured through specific survey questionnaires. Re-
searchers have developed and validated many questionnaires for use in clinical tri-
als to establish improvements in aspects of patients’ quality of life. These question-
naires, which are employed to assess quality of life issues, generate qualitative data.
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In Chapter 12, we will introduce you to research that involves the use of statistical
analysis measures for qualitative data. The survey instruments, their validation and
analysis are worthy topics for an entire book. For example, Fayers and Machin
(2000) give an excellent introduction to this subject matter.

In conclusion, Chapter 1 has presented introductory material regarding the field
of statistics. This chapter has illustrated how statistics are important in everyday life
and, in particular, has demonstrated how statistics are used in the health sciences. In
addition, the chapter has reviewed major job roles for statisticians. Finally, informa-
tion was presented on major categories of study designs and sources of health data
that statisticians may encounter. Tables 1.1 through 1.3 review and summarize the
key points presented in this chapter regarding the uses of statistics, job roles for sta-
tisticians, and sources of health data.

Table 1.1. Uses of Statistics in Health Sciences

1. Interpret research studies
Example: Validity of findings of health education and medical research
2. Evaluate statistics used every day
Examples: Hospital mortality rates, prevalence of infectious diseases
3. Presentation of data to audiences
Effective arrangement and grouping of information and graphical display of data
4. Illustrate central tendency and variability
5. Formulate and test hypotheses
Generalize from a sample to the population.

Table 1.2. What Do Statisticians Do?

1. Guide design of an experiment, clinical trial, or survey

2. Formulate statistical hypotheses and determine appropriate methodology
3. Analyze data

4. Present and interpret results

Table 1.3. Sources of Health Data.

1. Archival and vital statistics records

2. Experiments

3. Medical research studies
Retrospective—case control
Prospective—cohort study

4. Descriptive surveys

5. Clinical trials
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1.4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

WHAT IS STATISTICS? HOW IS IT APPLIED TO THE HEALTH SCIENCES?
EXERCISES

What is your current job or future career objective? How can an understand-
ing of statistics be helpful in your career?

What are some job roles for statisticians in the health field?

Compare and contrast descriptive and inferential statistics. How are they re-
lated?

Explain the major difference between prospective and retrospective studies.
Does one have advantages over the other?

What is the difference between observational and experimental studies? Why
do we conduct experimental studies? What is the purpose of observational
studies?

What are cross-sectional studies? What types of questions can they address?

Why are quality control methods important to manufacturers? List at least
three quality control methods discussed in the chapter.

Clinical trials play a vital role in testing and development of new drugs and

medical devices.

a. What are clinical trials?

b. Explain the difference between controlled and uncontrolled trials.

¢. Why are controls important?

d. What are single and double blinding? How is blinding used in a clinical tri-
al?

e. What types of outcomes for patients are measured through the use of clini-
cal trials? Name at least four.

Epidemiology, a fundamental discipline in public health, has many applica-
tions in the health sciences.

a. Name three types of epidemiologic study designs.

b. What types of problems can we address with them?

Suppose a health research institute is conducting an experiment to determine

whether a computerized, self-instructional module can aid in smoking cessa-

tion.

a. Propose a research question that would be relevant to this experiment.

b. Is there an independent variable (exposure factor) in the institute’s experi-
ment?

c. How should the subjects be assigned to the treatment and control groups in
order to minimize bias?
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A pharmaceutical company wishes to develop and market a new medication

to control blood sugar in diabetic patients. Suggest a clinical trial for evaluat-

ing the efficacy of this new medication.

a. Describe the criteria you would use to select cases or patients.

b. Is there a treatment to compare with a competing treatment or against a
placebo?

c. How do you measure effectiveness?

d. Do you need to address the safety aspects of the treatment?

e. Have you planned an early stopping rule for the trial if the treatment ap-
pears to be unsafe?

f. Are you using blinding in the trial? If so, how are you implementing it?
What problems does blinding help you avoid?

Search the Web for a media account that involves statistical information. For

example, you may be able to locate a report on a disease, a clinical trial, or a

new medical device. Alternatively, if you do not have access to the Web,

newspaper articles may cover similar topics. Sometimes advertisements for

medicines present statistics. Select one media account and answer the follow-

ing questions:

a. How were the data obtained?

b. Based on the information presented, do you think that the investigators
used a descriptive or inferential approach?

c. Ifinferences are being drawn, what is the main question being addressed?

d. How was the sample selected? To what groups can the results be general-
ized?

e. Could the results be biased? If so, what are the potential sources of bias?

f. Were conclusions presented? If so, do you think they were warranted?
Why or why not?

Public interest groups and funding organizations are demanding that clinical
trials include diverse study populations—from the standpoint of age, gender,
and ethnicity. What do you think is the reasoning behind this demand? Based
on what you have read in this chapter as well as your own experiences, what
are the advantages and disadvantages of using diverse study groups in clinical
trials?

ADDITIONAL READING

Included here is a list of many references that the student might find helpful.
Many pertain to the material in this chapter and all are relevant to the material in
this text as a whole. Some also were referenced in the chapter. In addition, the
quotes in the present text come from the book of statistical quotations, “Statis-
tically Speaking,” by Gaither and Cavazos-Gaither, as we mentioned in the
Preface. The student is encouraged to look through the other quotes in that book.
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They may be particularly meaningful after you have completed reading this text-
book.

Senn (reference #32) covers important and subtle issues in drug development,
including issues that involve the design and analysis of experiments, epidemiologi-
cal studies, and clinical trials. We already have alluded to some of these issues in
this chapter. Chow and Shao (reference #11) presents the gamut of statistical
methodologies in the various stages of drug development. The present text provides
basic methods and a few advanced techniques but does not cover issues such as
clinical relevance, development objectives, and regulatory objectives that the stu-
dent might find interesting. Senn’s book (reference #32) and Chow and Shao (refer-
ence #11) both provide this insight at a level that the student can appreciate, espe-
cially after completing this text.
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CHAPTER 2

Defining Populations
and Selecting Samples

After painstaking and careful analysis of a sample, you are always

told that it is the wrong sample and doesn’t apply to the problem.
—Arthur Bloch, Murphy’s Law. Fourth Law of Revision, p. 48

Chapter 1 provided an introduction to the field of biostatistics. We discussed appli-
cations of statistics, study designs, as well as descriptive statistics, or exploratory
data analysis, and inferential statistics, or confirmatory data analysis. Now we will
consider in more detail an aspect of inferential statistics—sample selection—that
relates directly to our ability to make inferences about a population.

In this chapter, we define the terms population and sample and present several
methods for selecting samples. We present a rationale for selecting samples and
give examples of several types of samples: simple random, convenience, systemat-
ic, stratified random, and cluster. In addition, we discuss bootstrap sampling be-
cause of its similarity to simple random sampling. Bootstrap sampling is a proce-
dure for generating bootstrap estimates of parameters, as we will demonstrate in
later chapters. Detailed instructions for selecting simple random and bootstrap sam-
ples will be provided. The chapter concludes with a discussion of an important
property of random sampling, namely, unbiasedness.

2.1 WHAT ARE POPULATIONS AND SAMPLES?

The term population refers to a collection of people or objects that share common
observable characteristics. For example, a population could be all of the people who
live in your city, all of the students enrolled in a particular university, or all of the
people who are afflicted by a certain disease (e.g., all women diagnosed with breast
cancer during the last five years). Generally, researchers are interested in particular
characteristics of a population, not the characteristics that define the population but
rather such attributes as height, weight, gender, age, heart rate, and systolic or dias-
tolic blood pressure.

22 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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Recall the approaches of statistics (descriptive and inferential) discussed in
Chapter 1. In making inferences about populations we use samples. A sample is a
subset of the population.

In this chapter we will discuss techniques for selecting samples from popula-
tions. You will see that various forms of random sampling are preferable to nonran-
dom sampling because random sample designs allow us to apply statistical methods
to make inferences about population characteristics based on data collected from
samples.

When describing the attributes of populations, statisticians use the term parame-
ter. In this text, the symbol w will be used to denote a population parameter for the
average (also called the mean or expected value). The corresponding estimate from
a sample is called a statistic. For the sample estimate, the mean is denoted by X.

Thus, it is possible to refer to the average height or age of a population (the para-
meter) as well as the average height of a sample (a statistic). In fact, we need infer-
ential statistics because we are unable to determine the values of the population pa-
rameters and must use the sample statistics in their place. Using the sample statistic
in place of the population parameter is called estimation.

2.2 WHY SELECT A SAMPLE?

Often, it is too expensive or impossible to collect information on an entire popula-
tion. For appropriately chosen samples, accurate statistical estimates of population
parameters are possible. Even when we are required to count the entire population
as in a U.S. decennial census, sampling can be used to improve estimates for impor-
tant subpopulations (e.g., states, counties, cities, or precincts).

In the most recent national election, we learned that the outcome of a presiden-
tial election in a single state (Florida) was close enough to be in doubt as a conse-
quence of various types of counting errors or exclusion rules. So even when we
think we are counting every vote accurately we may not be; surprisingly, a sample
estimate may be more accurate than a “complete” count.

As an example of a U.S. government agency that uses sampling, consider the In-
ternal Revenue Service (IRS). The IRS does not have the manpower necessary to
review every tax return for mistakes or misrepresentation; instead, the IRS chooses
a selected sample of returns. The IRS applies statistical methods to make it more
likely that those returns prone to error or fraud are selected in the sample.

A second example arises from reliability studies, which may use destructive test-
ing procedures. To illustrate, a medical device company often tests the peel strength
of its packaging material. The company wants the material to peel when suitable
force is applied but does not want the seal to come open upon normal handling and
shipping. The purpose of the seal is to maintain sterility for medical products, such
as catheters, contained in the packages. Because these catheters will be placed in-
side patients’ hearts to treat arrhythmias, maintenance of sterility in order to prevent
infection is very important. When performing reliability tests, it is feasible to peel
only a small percentage of the packages, because it is costly to waste good packag-
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ing. On the other hand, accurate statistical inference requires selecting sufficiently
large samples.

One of the main challenges of statistics is to select a sample in an efficient, ap-
propriate way; the goal of sample selection is to be as accurate as possible in order
to draw a meaningful inference about population characteristics from results of the
sample. At this point, it may not be obvious to you that the method of drawing a
sample is important. However, history has taught us that it is very easy to draw in-
correct inferences because samples were chosen inappropriately.

We often see the results of inappropriate sampling in television and radio polls.
This subtle problem is known as a selection bias. Often we are interested in a wider
target population but the poll is based only on those individuals who listened to a
particular TV or radio program and chose to answer the questions. For instance, if
there is a political question and the program has a Republican commentator, the au-
dience may be more heavily Republican than the general target population. Conse-
quently, the survey results will not reflect the target population. In this example, we
are assuming that the response rate was sufficiently high to produce reliable results
had the sample been random.

Statisticians also call this type of sampling error response bias. This bias often
occurs when volunteers are asked to respond to a poll. Even if the listeners of a par-
ticular radio or TV program are representative of the target population, those who
respond to the poll may not be. Consequently, reputable poll organizations such as
Gallup or Harris use well-established statistical procedures to ensure that the sam-
ple is representative of the population.

A classic example of failure to select a representative sample of voters arose
from the Literary Digest Poll of 1936. In that year, the Literary Digest mailed out
some 10 million ballots asking individuals to provide their preference for the up-
coming election between Franklin Roosevelt and Alfred Landon. Based on the sur-
vey results derived from the return of 2.3 million ballots, the Literary Digest pre-
dicted that Landon would be a big winner.

In fact, Roosevelt won the election with a handy 62% majority. This single poll
destroyed the credibility of the Literary Digest and soon caused it to cease publica-
tion. Subsequent analysis of their sampling technique showed that the list of 10 mil-
lion persons was taken primarily from telephone directories and motor vehicle reg-
istration lists. In more recent surveys of voters, public opinion organizations have
found random digit dialed telephone surveys, as well as surveys of drivers, to be ac-
ceptable, because almost every home in the United States has a telephone and al-
most all citizens of voting age own or lease automobiles and hence have drivers li-
censes. The requirement for the pollsters is not that the list be exhaustive but rather
that it be representative of the entire population and thus not capable of producing a
large response or selection bias. However, in 1936, mostly Americans with high in-
comes had phones or owned cars.

The Literary Digest poll selected a much larger proportion of high-income fami-
lies than are typical in the voting population. Also, the high-income families were
more likely to vote Republican than the lower-income families. Consequently, the
poll favored the Republican, Alf Landon, whereas the target population, which con-
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tained a much larger proportion of low-income Democrats than were in the survey,
strongly favored the Democrat, Franklin Roosevelt. Had these economic groups
been sampled in the appropriate proportions, the poll would have correctly predict-
ed the outcome of the election.

2.3 HOW SAMPLES CAN BE SELECTED

2.3.1 Simple Random Sampling

Statisticians have found that one of the easiest and most convenient methods for
achieving reliable inferences about a population is to take a simple random sample.
Random sampling ensures unbiased estimates of population parameters. Unbiased
means that the average of the sample estimates over all possible samples is equal to
the population parameter. Unbiasedness is a statistical property based on probabili-
ty theory and can be proven mathematically through the definition of a simple ran-
dom sample.

The concept of simple random sampling involves the selection of a sample of
size n from a population of size N. Later in this text, we will show, through combi-
natorial mathematics, the total number of possible ways (say Z) to select a sample
of size n out of a population of size N. Simple random sampling provides a mecha-
nism that gives an equal chance 1/Z of selecting any one of these Z samples. This
statement implies that each individual in the population has an equal chance of se-
lection into the sample.

In Section 2.4, we will show you a method based on random number tables for
selecting random samples. Suppose we want to estimate the mean of a population (a
parameter) by using the mean of a sample (a statistic). Remember that we are not
saying that the individual sample estimate will equal the population parameter. If
we were to select all possible samples of a fixed size (7) from the parent population,
when all possible means are averaged we would obtain the population parameter.
The relationship between the mean of all possible sample means and the population
parameter is a conceptual issue specified by the central limit theorem (discussed in
Chapter 7). For now, it is sufficient to say that in most applications we do not gen-
erate all possible samples of size n. In practice, we select only one sample to esti-
mate the parameter. The unbiasedness property of sample means does not even
guarantee that individual estimates will be accurate (i.e., close to the parameter val-
ue).

2.3.2 Convenience Sampling

Convenience sampling is just what the name suggests: the patients or samples are
selected by an arbitrary method that is easy to carry out. Some researchers refer to
these types of samples as “grab bag” samples.

A desirable feature of samples is that they be representative of the population,
i.e., that they mirror the underlying characteristics of the population from which
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they were selected. Unfortunately, there is no guarantee of the representativeness of
convenience samples; thus, estimates based on these samples are likely to be bi-
ased.

However, convenience samples have been used when it is very difficult or im-
possible to draw a random sample. Results of studies based on convenience samples
are descriptive and may be used to suggest future research, but they should not be
used to draw inferences about the population under study.

As a final point, we note that while random sampling does produce unbiased es-
timates of population parameters, it does not guarantee balance in any particular
sample drawn at random. In random sampling, all samples of size n out of a popula-
tion of size N are equally possible. While many of these samples are balanced with
respect to demographic characteristics, some are not.

Extreme examples of nonrepresentative samples are (1) the sample containing
the n smallest values for the population parameter and (2) the sample containing the
n largest values. Because neither of these samples is balanced, both can give poor
estimates.

For example (regarding point 2), suppose a catheter ablation treatment is known
to have a 95% chance of success. That means that we expect only about one failure
in a sample of size 20. However, even though the probability is very small, it is pos-
sible that we could select a random sample of 20 individuals with the outcome that
all 20 individuals have failed ablation procedures.

2.3.3 Systematic Sampling

Often, systematic sampling is used when a sampling frame (a complete list of peo-
ple or objects constituting the population) is available. The procedure is to go to the
top of the list and select the first person or start at an arbitrary but specified initial
point in the table. The choice of the first point really does not matter, but merely
starts the process and must be specified to make the procedure repeatable. Then we
skip the next n people on the list and select the # + 2 person. We continue to skip »
people and select the next one after n people are skipped. We continue this process
until we have exhausted the list.

Here is an example of systematic sampling: suppose a researcher needs to se-
lect 30 patients from a list of 5000 names (as stated previously, the list is called
the sampling frame and conveniently defines the population from which we are
sampling). The researcher would select the first patient on the list, skip to the thir-
ty-second name on the list, select that name, and then skip the next 30 names and
select the next name after that, repeating this process until a total of 30 names has
been selected. In this example, the sampling interval (i.e., number of skipped
cases) is 30.

In the foregoing procedure, we designated the sampling interval first. As we
would go through only slightly more than 800 of the 5000 names, we would not ex-
haust the list. Alternatively, we could select a certain percentage of patients, for ex-
ample, 1%. That would be a sample size of 50 for a list of 5000. Although the
choice of the number of names to skip is arbitrary, suppose we skip 100 names on
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the list; the first patient will be 1, the second 102, the third 203, the fourth 304, the
fifth 405, and so on until we reach the final one, the fiftieth number, 4950. In this
case, we nearly exhaust the list, and the samples are evenly selected throughout the
list.

As you can see, systematic sampling is easy and convenient when such a com-
plete list exists. If there is no relationship between the order of the people on the list
and the characteristics that we are measuring, it is a perfectly acceptable sampling
method. In some applications, we may be able to convince ourselves that this situa-
tion is true.

However, there are situations in which systematic sampling can be disastrous.
Suppose, for example, that one of the population characteristics we are interested in
is age. Now let us assume that the population consists of 50 communities in South-
ern California. Each community contains 100 people.

We construct our sampling frame by sorting each member according to age,
from the youngest to the oldest in each community, and then arranging the commu-
nities in some order one after another, such as in alphabetical order by community
name. Here N = 5,000 and we want n = 50. One way to choose a systematic sample
would be to select the first member from each community.

We could have obtained the sample by selecting the first person on the list and
then skipping the next 99. But, thereby, we would select the youngest member from
each community, thus providing a severely biased estimate (on the low side) of the
average age in the population. Similarly, if we were to skip the first 99 people and
always take the hundreth, we would be biased on the high side, as we would select
only the oldest person in each community.

Systematic sampling can lead to difficulties when the variable of interest is peri-
odic (with period #) in the sequence order of the sampling frame. The term periodic
refers to the situation in which groups of elements appear in a cyclical pattern in the
list instead of being uniformly distributed throughout the list. We can consider the
sections of the list in which these elements are concentrated to be peaks, and the
sections in which they are absent to be troughs. If we skip » people in the sequence
and start at a peak value, we will select only the peak values. The same result would
happen for troughs. For the scenario in which we select the peaks, our estimate will
be biased on the high side; for the trough scenario, we will be biased on the low
side.

Here is an example of the foregoing source of sampling error, called a periodic
or list effect. If we used a very long list such as a telephone directory for our sam-
pling frame and needed to sample only a few names using a short sampling interval,
it is possible that we could select by accident a sample from a portion of the list in
which a certain ethnic group is concentrated. The resulting sample would not be
very representative of the population. If the characteristics of interest to us varied
considerably by ethnic group, our estimate of the population parameter could be
very biased.

To realize that the foregoing situation could happen easily, recall that many Cau-
casians have the surnames Jones and Smith, whereas many Chinese are named Liu,
and many Vietnamese are named Nguyen. So if we happened to start near Smith we
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would obtain mostly Caucasian subjects and mostly Chinese subjects if we started
at Liu!

2.3.4 Stratified Random Sampling

Stratified random sampling is a modification of simple random sampling that is
used when we want to ensure that each stratum (subgroup) constitutes an appropri-
ate proportion or representation in the sample. Stratified random sampling also can
be used to improve the accuracy of sample estimates when it is known that the vari-
ability in the data is not constant across the subgroups.

The method of stratified random sampling is very simple. We define m sub-
groups or strata. For the ith subgroup, we select a simple random sample of size #;.
We follow this procedure for each subgroup. The total sample size # is then 3/ ;n;.

The notation 3 stands for the summation of the individual »,’s. For example, if
there are three groups, then 32,1, = n, + n, + n;. Generally we have a total sample
size “n” in mind.

Statistical theory can demonstrate that in many situations, stratified random sam-
pling produces an unbiased estimate of the population mean with better precision
than does simple random sampling with the same total sample size n. Precision of
the estimate is improved when we choose large values of »; for the subgroups with
the largest variability and small values for the subgroups with the least variability.

2.3.5 Cluster Sampling

As an alternative to the foregoing sampling methods, statisticians sometimes select
cluster samples. Cluster sampling refers to a method of sampling in which the ele-
ment selected is a group (as distinguished from an individual), called a cluster. For
example, the clusters could be city blocks. Often, the U.S. Bureau of the Census
finds cluster sampling to be a convenient way of sampling.

The Bureau might conduct a survey by selecting city blocks at random from a list
of city blocks in a particular city. The Bureau would interview a head of household
from every household in each city block selected. Often, this method will be more
economically feasible than other ways to sample, particularly if the Census Bureau
has to send employees out to the communities to conduct the interviews in person.

Cluster sampling often works very well. Since the clusters are selected at random,
the samples can be representative of the population; unbiased estimates of the popu-
lation total or mean value for a particular parameter can be obtained. Sometimes,
there is loss of precision for the estimate relative to simple random sampling; how-
ever, this disadvantage can be offset by the reduction in cost of the data collection.

See Chapter 9 of Cochran (1977) for a more detailed discussion and some math-
ematical results about cluster sampling. Further discussion can be found in Lohr
(1999) and Kish (1965). While clusters can be of equal or unequal size, the mathe-
matics is simpler for equal size. The three aforementioned texts develop the theory
for equal cluster sizes first and then go on to deal with the more complicated case of
unequal cluster sizes.
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Thus far in Section 2.3, we have presented a brief description of sampling tech-
niques used in surveys. For a more complete discussion see Scheaffer, Mendenhall,
and Ott (1979), Kish (1965), Cochran (1977), or Lohr (1999).

2.3.6 Bootstrap Sampling

Throughout this text, we will discuss both parametric and nonparametric methods
of statistical inference. One such nonparametric technique is the bootstrap, a statis-
tical technique in which inferences are made without reliance on parametric models
for the population distribution. Other nonparametric techniques are covered in
Chapter 14. Nonparametric methods provide a means for obtaining sample esti-
mates or testing hypotheses without making parametric assumptions about the dis-
tribution being sampled.

The account of the bootstrap in this book is very elementary and brief. A more
thorough treatment can be obtained from the following books: Efron and Tibshirani
(1993), Davison and Hinkley (1997), and Chernick (1999). An elementary and ab-
breviated account can be found in the monograph by Mooney and Duval (1993).

Before considering the bootstrap in more detail, let us review sampling with re-
placement and sampling without replacement. Suppose we are selecting items in se-
quence from our population. If, after we select the first item from our population,
we allow that item to remain on the list of eligible items for subsequent selection
and we continue selecting in this way, we are performing sampling with replace-
ment. Simple random sampling differs from sampling with replacement in that we
remove each item from the list of possible subsequent selections. So in simple ran-
dom sampling, no observations are repeated. Simple random sampling uses sam-
pling without replacement.

The bootstrap procedure can be approximated by using a Monte Carlo (random
sampling) method. This approximation makes the bootstrap a practical, though
computationally intensive, procedure. The bootstrap sampling procedure takes a
random sample with replacement from the original sample. That is, we take sam-
ples from a sample (i.e., we resample).

In Section 2.4, we describe a mechanism for generating a simple random sample
(sampling without replacement from the population). Because bootstrap sampling is
so similar to simple random sampling, Section 2.5 will describe the procedure for
generating bootstrap samples.

The differences between bootstrap sampling and simple random sampling are
first, that instead of sampling from a population, a bootstrap sample is generated by
sampling from a sample, and, second, that the sampling is done with replacement
instead of without replacement. These differences will be made clear in Section 2.5.

24 HOW TO SELECT A SIMPLE RANDOM SAMPLE

Simple random sampling can be defined as sampling without replacement from a
population. In Section 5.5, when we cover permutations and combinations, you will
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learn that there are C(N, n) = N!/[(N — n)! n!] distinct samples of size n out of a pop-
ulation of size N, where n! is factorial notation and stands for the product n(n — 1)
(n—2)...32 1. The notation C(N, n) is just a symbol for the number of ways of se-
lecting a subgroup of size n out of a larger group of size N, where the order of se-
lecting the elements is not considered.

Simple random sampling has the property that each of these C(¥, n) samples has
the same probability of selection. One way, but not a common way, to generate a
simple random sample is to order these samples from 1 all the way to C(N, n) and
then randomly generate (using a uniform random number generator, which will be
described shortly) an integer between 1 and C(N, n). You then choose the sample
that corresponds to a chosen index.

Let us illustrate this method of generating a simple random sample with the fol-
lowing example. We have six patients whom we have labeled alphabetically. So the
population of patients is the set {A, B, C, D, E, F}. Suppose that we want our sam-
ple size to be four. The number of possible samples will be C(6, 4) = 6!/[4! 2!]1=6
X 5x4x3x2x1/[(4x3x2x1)2 x 1)]; after reducing the fraction, we obtain 3
x 5 =15 possible samples.

We enumerate the samples as follows:

{A,B,C,D}
{A,B,C,E}
{A,B,C, F}
{A,B,D,E}
{A,B, D, F}
{A,B,E, F}
{A,C,D,E}
{A,C,D, F}
{A,C,E, F}
{A,D, E, F}
. {B,C,D,E}
. {B,C,D, F}
. {B,C,E, F}
{B,D,E, F}
. {C,D, E, F}.
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We then use a table of uniform random numbers or a computerized pseudoran-
dom number generator. A pseudorandom number generator is a computer algo-
rithm that generates a sequence of numbers that behave like uniform random num-
bers.

Uniform random numbers and their associated uniform probability distribution
will be explained in Chapter 5. To assign a random index, we take the interval [0, 1]
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and divide it into 15 equal parts that do not overlap. This means that the first inter-
val will be from 0 to 1/15, the second from 1/15 to 2/15, and so on. A decimal ap-
proximation to 1/15 is 0.0667. So the assigned index (we will call it an index rule)
depends on the uniform random number U as follows:

If 0 = U<0.0667, then the index is 1.

1f 0.0667 = U <0.1333, then the index is 2.
1 0.1333 = U < 0.2000, then the index is 3.
I£0.2000 = U < 0.2667, then the index is 4.
1f 0.2667 = U < 0.3333, then the index is 5.
1f 0.3333 = U < 0.4000, then the index is 6.
1f 0.4000 = U < 0.4667, then the index is 7.
1f 0.4667 = U < (0.5333, then the index is 8.
1£0.5333 = U < 0.6000, then the index is 9.
If 0.6000 = U < 0.6667, then the index is 10.
1f 0.6667 = U <0.7333, then the index is 11.
1£0.7333 = U < 0.8000, then the index is 12.
1 0.8000 = U <0.8667, then the index is 13.
1f 0.8667 = U < 0.9333, then the index is 14.
1f0.9333 = U< 1.0, then the index is 15.

Now suppose that we consulted a table of uniform random numbers, (refer to
Table 2.1). We see that this table consists of five-digit numbers. Let us arbitrarily
select the number in column 7, row 19. We see that this number is 24057.

To convert 24057 to a number between 0 and 1, we simply place a decimal point
in front of the first digit. Our uniform random number is then 0.24057. From the in-
dex rule described previously, we see that U = 0.24057. Since 0.2000 = U <
0.2667, the index is 4. We now refer back to our enumeration of samples and see
that the index 4 corresponds to the sample {A, B, D, E}. So patients A, B, D, and E
are selected as our sample of four patients from the set of six patients.

A more common way to generate a simple random sample is to choose four ran-
dom numbers to select individual patients. This procedure is accomplished by sam-
pling without replacement. First we order the patients as follows:

S e
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TABLE 2.1. Five Digit Uniform Random Numbers (350)

Col/Row 1 2 3 4 5 6 7 8 9 10

1 00439 60176 48503 14559 18274 45809 09748 19716 15081 84704

2 29676 37909 95673 66757 04164 94000 19939 55374 26109 58722

3 69386 71708 88608 67251 22512 00169 02887 84072 91832 97489

4 68381 61725 49122 75836 15368 52551 58711 43014 95376 57402

5 69158 38683 41374 17028 09304 10834 10332 07534 79067 27126

6 00858 04352 17833 41105 46569 90109 32335 65895 64362 01431

7 86972 51707 58242 16035 94887 83510 53124 85750 98015 00038

8 30606 45225 30161 07973 03034 82983 61369 65913 65478 62319

9 93864 49044 57169 43125 11703 87009 06219 28040 10050 05974
10 61937 90217 56708 35351 60820 90729 28489 88186 74006 18320
11 94551 69538 52924 08530 79302 34981 60530 96317 29918 16918
12 79385 49498 48569 57888 70564 17660 68930 39693 87372 09600
13 86232 01398 50258 22868 71052 10127 48729 67613 59400 65886
14 04912 01051 33687 03296 17112 23843 16796 22332 91570 47197
15 15455 88237 91026 36454 18765 97891 11022 98774 00321 10386
16 88430 09861 45098 66176 59598 98527 11059 31626 10798 50313
17 48849 11583 63654 55670 89474 75232 14186 52377 19129 67166
18 33659 59617 40920 30295 07463 79923 83393 77120 38862 75503
19 60198 41729 19897 04805 09351 76734 24057 87776 36947 88618
20 55868 53145 66232 52007 81206 89543 66226 45709 37114 78075
21 22011 71396 95174 43043 68304 36773 83931 43631 50995 68130
22 90301 54934 08008 00565 67790 84760 82229 64147 28031 11609
23 07586 90936 21021 54066 87281 63574 41155 01740 29025 19909
24 09973 76136 87904 54419 34370 75071 56201 16768 61934 12083
25 59750 42528 19864 31595 72097 17005 24682 43560 74423 59197
26 74492 19327 17812 63897 65708 07709 13817 95943 07909 75504
27 69042 57646 38606 30549 34351 21432 50312 10566 43842 70046
28 16054 32268 29828 73413 53819 39324 13581 71841 94894 64223
29 17930 78622 70578 23048 73730 73507 69602 77174 32593 45565
30 46812 93896 65639 73905 45396 71653 01490 33674 16888 53434
31 04590 07459 04096 15216 56633 69845 85550 15141 56349 56117
32 99618 63788 86396 37564 12962 96090 70358 23378 63441 36828
33 34545 32273 45427 30693 49369 27427 28362 17307 45092 08302
34 04337 00565 27718 67942 19284 69126 51649 03469 88009 41916
35 73810 70135 72055 90111 71202 08210 76424 66364 63081 37784

Source: Adapted from Kuzma (1998), p. 15.

Then we divide [0, 1] into six equal intervals to assign the index. We choose a

uniform random number U and assign the indices as follows:

If 0 = U<0.1667, then the index is 1.

If0.1667 = U <0.3333, then the index is 2.
1£0.3333 = U < 0.5000, then the index is 3.
I£0.5000 = U < 0.6667, then the index is 4.
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If 0.6667 = U < 0.8333, then the index is 5
1f 0.8333 = U< 1.0, then the index is 6.

Refer back to Table 2.1. We will use the first four numbers in column 1 as our
set of uniform random numbers for this sample. The resulting numbers are 00439,
29676, 69386, and 68381. For the first patient we have the uniform random number
(U) 0.00439. Since 0 = U <0.1667, the index is 1. Hence, our first selection is pa-
tient A.

Now we select the second patient at random but without replacement. Therefore,
A must be removed. We are left with only five indices. So we must revise our
scheme. The patient order is now as follows:
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The uniform random number must be divided into five equal parts, so the index
assignment is as follows:

If 0 = U< 0.2000, then the index is 1.
1£0.2000 = U < 0.4000, then the index is 2.
If 0.4000 = U < 0.6000, then the index is 3.
I£ 0.6000 = U < 0.8000, then the index is 4.
1f 0.8000 = U < 1.0, then the index is 5.

The second uniform number is 29676, so our uniform number U in [0, 1] is
0.29676. Since 0.2000 = U < 0.4000, the index is 2. We see that the index 2 corre-
sponds to patient C.

We continue to sample without replacement. Now we have only four indices left,
which are assigned as follows:

WO W

1.
2.
3.
4.
The interval from [0, 1] must be divided into four equal parts with U assigned as

follows:

If 0 = U<0.2500, then the index is 1.
1f 0.2500 = U < 0.5000, then the index is 2.
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If 0.5000 = U < 0.7500, then the index is 3.
If 0.7500 = U < 1.0, then the index is 4.

Since our third uniform number is 69386, U = 0.69386. Since 0.5000 = U <
0.7500, the index is 3. We see that the index 3 corresponds to patient E.

We have one more patient to select and are left with only three patients to choose
from. The new ordering of patients is as follows:

»oho=
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We now divide [0, 1] into three equal intervals as follows:

If 0 = U <0.3333, then the index is 1.

If 0.3333 = U< 0.6667, then the index is 2.

If 0.6667 = U < 1.0, then the index is 3.

The final uniform number is 68381. Therefore, U = 0.68381.

From the assignment above, we see that index 3 is selected and corresponds to
patient F. The four patients selected are A, C, E, and F. The foregoing approach, in
which patients are selected at random without replacement, is another legitimate
way to generate a random sample of size 4 from a population of size 6. (When we
do bootstrap sampling, which requires sampling with replacement, the methodolo-
gy will be simpler than the foregoing approach.)

The second approach was simpler, in one respect, than the first approach. We did
not have to identify and order all 15 possible samples of size 4. When the popula-
tion size is larger than in the given example, the number of possible samples can be-
come extremely large, making it difficult and time-consuming to enumerate them.

On the other hand, the first approach required the generation of only a single uni-
form random number, whereas the second approach required the generation of four.
However, we have large tables and fast pseudorandom number generator algo-
rithms at our disposal. So generating four times as many random numbers is not a
serious problem.

It may not seem obvious that the two methods are equivalent. The equivalence
can be proved mathematically by using probability methods. The proof of this
equivalence is beyond the scope of this text. The sampling without replacement ap-
proach is not ideal because each time we select a patient we have to revise our index
schemes, both the mapping of patients to indices and the choice of the index based
on the uniform random number.

The use of a rejection-sampling scheme can speed up the process of sample se-
lection considerably. In rejection sampling, we reject a uniform random number if it
corresponds to an index that we have already picked. In this way, we can begin with
the original indexing scheme and not change it. The trade-off is that we may need to
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generate a few more uniform random numbers in order to complete the sample. Be-
cause random number generation is fast, this trade-off is worthwhile.

Let us illustrate a rejection-sampling scheme with the same set of six patients as
before, again selecting a random sample of size 4. This time, we will start in the
second row, first column and move across the row. Our indexing schemes are fixed
as described in the next paragraphs.

First we order the patients as follows:

1. A
2. B
3. C
4. D
5. E
6. F

Then we divide [0, 1] into six equal intervals to assign the index. We choose a
uniform random number U and assign the indices as follows:

If 0 = U<0.1667, then the index is 1.
1f0.1667 = U < 0.3333, then the index is 2.
1f0.3333 = U <0.5000, then the index is 3.
1f0.5000 = U < 0.6667, then the index is 4.
1f 0.6667 = U <0.8333, then the index is 5
1f 0.8333 = U< 1.0, then the index is 6.

The first uniform number is 29676, so U = 0.29676. The index is 2, and the cor-
responding patient is B. Our second uniform number is 37909, so U = 0.37909. The
index is 3, and the corresponding patient is C. Our third uniform number is 95673,
so U =0.95673. The index is 6, and this corresponds to patient F. The fourth uni-
form number is 66757, so U = 0.6676 and the index is 5; this corresponds to patient
E.

Through the foregoing process we have selected patients B, C, E, and F for our
sample. Thus, we see that this approach was much faster than previous approaches.
We were somewhat lucky in that no index repeated; thus, we did not have to reject
any samples. Usually one or more samples will be rejected due to repetition.

To show what happens when we have repeated index numbers, suppose we had
started in column 1 and simply gone down the column as we did when we used the
sampling without replacement approach. The first random number is 00439, corre-
sponding to U = 0.00439. The resulting index is 1, corresponding to patient A. The
second random number is 29676, corresponding to U = 0.29676. The resulting in-
dex is 2, corresponding to patient B. The third random number is 69386, corre-
sponding to U = 0.69386. The resulting index is 5, corresponding to patient E. The
fourth random number is 68381, corresponding to U = 0.68381.
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Again this process yields index 5 and corresponds to patient E. Since we cannot
repeat patient E, we reject this number and proceed to the next uniform random
number in our sequence. The number turns out to be 69158, corresponding to U =
0.69158, and index 5 is repeated again. So this number must be rejected also. The
next random number is 00858, corresponding to U = 0.00858, and an index of 1,
corresponding to patient A.

Now patient A already has been selected, so again we must reject the number
and continue. The next uniform random number is 86972, corresponding to U =
0.86972; this corresponds to the index 6 and patient F. Because patient F has not
been selected already, we accept this number and have completed the sample.

Recall the random number sequence 00439 — patient A, 29676 — patient B,
69386 — patient E, 68381 — patient E (repeat, so reject), 69158 — patient E (re-
peat, so reject), 00858 — patient A (repeat, so reject), and 86972 — patient F. Be-
cause we now have a sample of four patients, we are finished. The random sample
isA,B, E,and F.

We have illustrated three methods for generating simple random samples and re-
peated the rejection method with a second sequence of uniform random numbers.
Although the procedures are quite different from one another, it can be shown
mathematically that samples generated by any of these three methods have the
properties of simple random samples.

This result is important for you to remember, even though we are not showing
you the mathematical proof. In our examples, the samples turned out to be different
from one another. The first method led to A, B, D, E, the second to A, C, E, F, and
the third to B, C, E, F, using the first sequence; and A, B, E, F when using the sec-
ond sequence.

Differences occurred because of differences in the methods and differences in
the sequence of uniform random numbers. But note also that even when different
methods are used or different uniform random number sequences are used, it is pos-
sible to repeat a particular random sample.

Once the sample has been selected, we generally are interested in a characteristic
of the patient population that we estimate from the sample. In our example, let us
suppose that age is the characteristic of the population and that the six patients in
the population have the following ages:

A. 26 years old
. 17 years old
. 45 years old
. 70 years old

32 years old
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9 years old

Although we generally refer to the sample as the set of patients, often the value
of their characteristic is referred to as the sample. Because two patients can have the
same age, it is possible to obtain repeat values in a simple random sample. The
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point to remember is that the individual patients selected cannot be repeated but the
value of their characteristic may be repeated if it is the same for another patient.

A population parameter of interest might be the average age of the patients in the
population. Because our population consists of only six patients, it is easy for us to
calculate the population parameter in this instance. The mean age is defined as the
sum of the ages divided by the number of patients. In this case, the population mean
n=026+17+45+70+32+9)/6=199/6 =33.1667.

N
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where X; is the value for patient i and N is the population size.

Recall that a simple random sample has the property that the sample mean is an
unbiased estimate of the population mean. This does not imply that the sample
mean equals the population mean. It means only that the average of the sample
means taken over all possible simple random samples equals the population mean.

This is a desirable statistical property and is one of the reasons why simple ran-
dom sampling is used. Consider the population of six ages given previously. Sup-
pose we choose a random sample of size 4. Suppose that the sample consists of pa-
tients B, C, E, and F. Then the sample mean X = (17 + 45 + 32+ 9)/4 =19.5.

n

24X,
X= ":; (2.2)

where X; is the value for patient 7 in the sample and # is the sample size.

Now let us look at the four random samples that we generated previously and
calculate the mean age in each case. In the first case, we chose A, B, D, E with ages
26, 17, 70, and 32, respectively. The sample mean X = (26 + 17 + 70 + 32)/4 (the
sum of the ages of the sample patients divided by the total sample size). In this case
X =36.2500, which is slightly higher than the population mean of 33.1667.

Now consider case 2 with patients A, C, E, and F and corresponding ages 26, 45,
32, and 9. In this instance, X = (26 + 45 + 32 + 9)/4 = 28.0000, producing a sample
mean that is lower than the population mean of 33.1667.

In case 3, the sample consists of patients B, C, E, and F with ages 17, 45, 32,
and 9, respectively, and a corresponding sample mean, X = 25.7500. In case 4, the
sample consists of patients A, B, E, and F with ages 26, 17, 32, and 9, respec-
tively, and a corresponding sample mean, X = 21.0000. Thus, we see that the sam-
ple means from samples selected from the same population can differ substantial-
ly. However, the unbiasedness property still holds and has nothing to do with the
variability.

What is the unbiasedness property and how do we demonstrate it? For simple
random sampling, each of the C(N, n) samples has a probability of 1/C(N, n) of be-
ing selected. (Chapter 5 provides the necessary background to cover this point in
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more detail.) In our case, each of the 15 possible samples has a probability of 1/15
of being selected.

The unbiasedness property means that if we compute all 15 sample means, sum
them, and divide by 15, we will obtain the population mean. The following example
will verify the unbiasedness property of sample means. Recall that the 15 samples
with their respective sample means are as follows:

{A, B, C, D}, X= (26 + 17 + 45 + 70)/4 = 39.5000
{A, B, C,E}, X= (26 + 17 + 45 + 32)/4 = 30.0000
{A, B, C, F}, X= (26 + 17 + 45 + 9)/4 = 24.2500
{A,B, D, E}, X=(26+ 17 + 70 + 32)/4 = 36.2500
{A,B, D, F}, X=(26+ 17 + 70 + 9)/4 = 30.5000
{A, B, E, F}, X=(26+ 17 + 32 + 9)/4 = 21.0000
{A, C, D, B}, X = (26 + 45 + 70 + 32)/4 = 43.2500
{A, C,D, F}, X= (26 + 45 + 70 + 9)/4 = 37.5000
{A, C,E, F}, X= (26 + 45 + 32 + 9)/4 = 28.0000
{A, D, E, F}, X= (26 + 70 + 32 + 9)/4 = 34.2500
{B,C,D,E}, X=(17 + 45+ 70 + 32)/4 = 41.0000
. {B,C, D, F}, X=(17 +45+70 + 9)/4 = 35.2500
. {B,C,E, F}, X=(17 +45 + 32 + 9)/4 = 25.7500
. {B,D, E, F}, X= (17 + 70 + 32 + 9)/4 = 32.0000
. {C,D, E, F}, X= (45 + 70 + 32 + 9)/4 = 39.0000
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Notice that the largest mean is 43.2500, the smallest is 21.0000, and the closest
to the population mean is 34.2500. The average of the 15 sample means is called the
expected value of the sample mean, denoted by the symbol E.

The property of unbiasedness states that the expected value of the estimate
equals the population parameter [i.e., £(X) = u]. In this case, the population para-
meter is the population mean, and its value is 33.1667 (rounded to four decimal
places).

To calculate the expected value of the sample mean, we average the 15 values of
sample means (computed previously). The average yields E(X) = (39.5 + 30.0 +
2425+36.25+30.5+21.0+43.25+37.5+28.0+3425+41.0+3525+2575+
32.0 +39.0)/15=497.5/15 =33.1667. Consequently, we have demonstrated the un-
biasedness property in this case. As we have mentioned previously, this statistical
property of simple random samples can be proven mathematically. Sample esti-
mates of other parameters can also be unbiased and the unbiasedness of these esti-
mates for simple random samples can also be proven mathematically. But it is im-
portant to note that not all estimates of parameters are unbiased. For example, ratio
estimates obtained by taking the ratio of unbiased estimates for both the numerator
and denominator are biased. The interested reader may consult Cochran (1977) for
a mathematical proof that the sample mean is an unbiased estimate of a finite popu-
lation mean [Cochran (1977), page 22, Theorem 2.1] and the sample variance is an
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unbiased estimate of the finite population variance [as defined by Cochran (1977);
see Theorem 2.4 page 26].

2.5 HOWTO SELECT A BOOTSTRAP SAMPLE

The bootstrap method and its use in statistical inference will be covered more ex-
tensively in Chapter 8 when we discuss its application in estimation and contrast it
to parametric methods. In most applications, a sampling procedure is used to ap-
proximate the bootstrap method. That sampling procedure generates what are called
bootstrap samples, which are obtained by sampling with replacement. Because
sampling with replacement is a general sampling technique that is similar to ran-
dom sampling, we introduce it here.

In general, we can choose a random sample of size n with replacement from a
population of size N. In our applications of the bootstrap, the population for boot-
strap sampling will not be the actual population of interest but rather a given, pre-
sumably random, sample from the population.

In the first stage of selecting a bootstrap sample, we take the interval [0, 1] and
divide it into N equal parts. Then, for uniform random number U, we assign index 1
if 0 = U< 1/N, and index 2 if 1/N = U < 2/N, and so on until we assign index N if
(N—1)/N = U< 1. We generate n such indices by generating » consecutive uniform
random numbers. The procedure is identical to our rejection sampling scheme ex-
cept that none of the samples is rejected because repeated indices are allowed.

Bootstrap sampling is a special case of sampling with replacement. In ordinary
bootstrap sampling, » = N. Remember, for bootstrap sampling the population size N
is actually the size of the original random sample; the true population is replaced by
that sample.

Let us consider the population of six patients described previously in Section
2.4. Again, age is the variable of interest. We will generate 10 bootstrap samples of
size six for the ages of the patients. For the first sample we will use row 3 from
Table 2.1. The second sample will be generated using row 4, and so on for samples
3 through 10.

The first six uniform random numbers in row 3 are 69386, 71708, 88608, 67251,
22512, and 00169. The corresponding indices are 5, 5, 6, 5, 2, and 1. The corre-
sponding patients are E, E, F, E, B, and A, and the sampled ages are 32, 32, 9, 32,
17, and 26. The average age for this bootstrap sample is 24.6667.

There are 6° = 46,656 possible bootstrap samples of size six. In practice, we
sample only a small number, such as 50 to 100, when the total number of possible
samples is so large. A random selection of 100 samples provides a good estimate of
the bootstrap mean obtained from averaging the 46,656 bootstrap samples.

It is also true that the bootstrap sample mean is an unbiased estimate of the pop-
ulation mean for the following reason: For any random sample, the bootstrap sam-
ple estimate is an unbiased estimate of the mean of the random sample, and the
mean of the random sample is an unbiased estimate of the population mean.

We will determine all ten bootstrap samples, calculate their sample means, and
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see how close the average of the ten bootstrap sample means is to the population
mean age. Note that although the bootstrap provides an unbiased estimate of the
population mean, we can demonstrate this result only by averaging all 46,656 boot-
strap samples. Obviously, this calculation is difficult, so we will approximate only
the mean of the original sample by averaging the ten bootstrap samples. We expect
the result to be close to the mean of the original sample.

The 10 bootstrap samples are as follows:

1. 69386, 71708, 88608, 67251, 22512, and 00169 corresponding to patients
E, E, F, E, B, and A and ages 32, 32, 9, 32, 17, and 26 with mean X =
24.6667.

2. 68381, 61725, 49122, 75836, 15368, and 52551 corresponding to patients
E,D,C, E, A, and D, corresponding to ages 32, 70, 45, 32, 26, and 70 with
mean X =45.8333.

3. 69158, 38683, 41374, 17028, 09304, and 10834 corresponding to patients
E, C,C, B, A, and A, corresponding to ages 32, 45, 45, 17, 26, and 26 with
mean X = 31.8333.

4. 00858, 04352, 17833, 41105, 46569, and 90109 corresponding to patients
A, A, B, C, C, and F, corresponding to ages 26, 26, 17, 45, 45, and 9 with
mean X = 28.0.

5. 86972, 51707, 58242, 16035, 94887, and 83510 corresponding to patients F,
D, D, A, F, and F, corresponding to ages 9, 70, 70, 26, 9, and 9 with mean X
=32.1667.

6. 30606, 45225, 30161, 07973, 03034, and 82983 corresponding to patients
B, C, B, A, A, and E, corresponding to ages 17, 45, 17, 26, 26, and 32 with
mean X =27.1667.

7. 93864, 49044, 57169, 43125, 11703, and 87009 corresponding to patients F,
C,D, C, A, and F, corresponding to ages 9, 45, 70, 45, 26, and 9 with mean
X=34.0.

8. 61937, 90217, 56708, 35351, 60820, and 90729 corresponding to patients
D, F, D, C, D, and F, corresponding to ages 70, 9, 70, 45, 70, and 9 with
mean X =45.5.

9. 94551, 69538, 52924, 08530, 79302, and 34981 corresponding to patients F,
E, D, A, D, and C, corresponding to ages 9, 32, 70, 26, 70, and 45 with
mean X =42.0

10. 79385, 49498, 48569, 57888, 70564, and 17660 corresponding to patients
E, C, C, D, E, and B, corresponding to ages 32, 45, 45, 70, and 17 with
mean X = 34.8333.

The bootstrap mean is (24.6667 + 45.8333 + 31.8333 + 28.0 + 32.1667 + 27.1667 +
34.0 +45.5 +42.0 + 34.8333)/10 = 31.8833. This is to be compared to the original
sample mean of 33.1667. Recall from Section 2.4 that the population consisting of
patients A, B, C, D, E, and F represents our original sample for the bootstrap. We
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determined that the mean age for that sample was 33.1667. We would have ob-
tained greater accuracy if we had generated 50 to 100 bootstrap samples rather than
just 10. Had we generated all 46,656 possible distinct bootstrap samples, we would
have calculated the sample mean exactly.

2.6 WHY DOES RANDOM SAMPLING WORK?

We have illustrated an important property of simple random sampling, namely, that
estimates of population averages are unbiased. Under certain conditions, appropri-
ately chosen stratified random samples can produce unbiased estimates with better
accuracy than simple random samples (see Cochran, 1977).

A quantity that provides a description of the accuracy of the estimate of a popu-
lation mean is called the variance of the mean, and its square root is called the stan-
dard error of the mean. The symbol o2 is used to denote the population variance.
(Chapter 4 will provide the formulas for ¢2.) When the population size N is very
large, the sampling variance of the sample mean is known to be approximately o%/n
for a sample size of n.

In fact, as Cochran (1977) has shown, the exact value of this sample variance is
slightly smaller than the population variance due to the finite number N for the pop-
ulation. To correct for this slightly smaller estimate, a correction factor is applied
(see Chapter 4). If n is small relative to N, this correction factor can be ignored. The
fact that the variance of the sample mean is approximately o®/n tells us that since
the variance of the sample mean becomes small as # becomes large, individual sam-
ple means will be highly accurate.

Kuzma illustrated the phenomenon that large sample sizes produce highly accu-
rate estimates of the population mean with his Honolulu Heart Study data (Kuzma,
1998; Kuzma and Bohnenblust, 2001). For his data, the population size for the male
patients was N = 7683 (a relatively large number).

Kuzma determined that the population mean for his data was 54.36. Taking re-
peated samples of n = 100, Kuzma examined the mean age of the male patients.
Choosing five simple random samples of size n = 100, he obtained sample means of
54.85,54.31, 54.32, 54.67, and 54.02. All these estimates were within one-half year
of the population mean. In Kuzma’s example, the variance of the sample means was
small and »n was large. Consequently, all sample estimates were close to one anoth-
er and to the population mean. Thus, in general we can say that the larger the #n, the
more closely the sample estimate of the mean approaches the population mean.

2.7 EXERCISES
2.1 Why does the field of inferential statistics need to be concerned about sam-

ples? Give in your own words the definitions of the following terms that per-
tain to sample selection:
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2.3
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2.5

2.6

2.7

2.8
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Sample

Census

. Parameter

. Statistic

. Representativeness
Sampling frame

. Periodic effect

I O N R~

Describe the following types of sample designs, noting their similarities and
differences. State also when it is appropriate to use each type of sample de-
sign.
. Random sample
. Simple random samples
. Convenience/grab bag samples
. Systematic samples
. Stratified
Cluster
. Bootstrap

Q@ Mmoo oo o

Explain what is meant by the term parameter estimation.

How can bias affect a sample design? Explain by using the terms selection
bias, response bias, and periodic effects.

How is sampling with replacement different from sampling without replace-
ment?

Under what circumstances is it appropriate to use rejection sampling meth-
ods?

Why would a convenience sample of college students on vacation in Fort
Lauderdale, Florida, not be representative of the students at a particular col-
lege or university?

What role does sample size play in the accuracy of statistical inference? Why
is the method of selecting the sample even more important than the size of the
sample?

Exercises 2.9 to 2.13 will help you acquire familiarity with sample selection. These
exercises use data from Table 2.2.

2.9

By using the random number table (Table 2.1), draw a sample of 10 height
measurements from Table 2.2. This sample is said to have size 10, or n = 10.
The rows and columns in Table 2.2 have numbers, which in combination are
the “addresses” of specific height measurements. For example, the number
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TABLE 2.2. Heights in Inches of 400 Female Clinic Patients
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Col./Row 1 2 3 4 5 6 7 8
1 61 55 52 59 62 66 59 66
2 61 62 73 63 64 65 63 60
3 63 61 69 57 65 59 67 64
4 58 61 61 61 63 61 65 63
5 63 67 58 60 63 58 67 63
6 63 63 61 63 65 62 65 63
7 61 61 62 59 61 59 71 58
8 59 66 63 60 65 65 62 65
9 61 63 65 61 70 61 65 63

10 66 63 62 66 63 59 61 57
11 63 62 64 67 64 58 63 62
12 59 60 63 67 57 63 67 70
13 60 61 62 65 60 61 62 68
14 61 62 70 67 67 62 67 67
15 57 61 64 61 59 63 67 58
16 63 61 64 54 63 57 71 64
17 59 62 63 59 59 64 67 64
18 62 63 61 63 63 72 63 64
19 64 63 65 65 64 67 72 65
20 61 61 60 64 68 61 71 68
21 64 63 63 61 60 62 59 43
22 62 61 69 64 65 59 67 68
23 58 62 47 60 63 66 65 71
24 63 63 67 59 63 65 60 63
25 64 63 59 60 61 69 55 59
26 64 61 67 63 65 62 65 61
27 62 59 66 57 64 63 67 66
28 58 62 67 61 59 64 67 66
29 62 64 64 59 66 64 65 59
30 63 55 63 64 63 60 61 66
31 61 59 58 60 68 67 58 66
32 66 61 60 67 55 57 69 62
33 63 61 63 59 63 69 57 62
34 63 62 63 59 65 62 58 62
35 61 61 56 63 66 61 68 62
36 58 62 59 64 61 61 65 64
37 47 61 58 66 63 64 71 62
38 59 59 72 58 61 58 71 58
39 59 60 59 62 66 67 65 63
40 61 60 60 61 60 60 63 64
41 60 61 60 61 59 63 63 68
42 62 60 55 64 63 64 71 66
43 63 63 59 59 65 67 71 61
44 64 60 55 67 61 63 65 70
45 62 63 68 61 67 65 64 66

(continued)
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TABLE 2.2. Continued

Col./Row 1 2 3 4 5 6 7 8
46 59 62 55 67 58 63 64 59
47 64 60 65 63 62 63 71 58
48 62 66 61 66 57 65 61 70
49 66 66 63 67 61 65 62 63
50 59 60 61 59 56 65 61 62
Source: Robert Friis.

2.10

2.11

2.12

2.13

2.14

defined by row 15, column 4 denotes the 154th height measurement, or 61.
Use two indices based on numbers from Table 2.1. Draw one random number
to select the row between 1 and 50 and another to choose the column between
1 and 8. Use the rejection method. List the ten values you have selected by
this process. What name is given to the kind of sample you have selected?

Again use Table 2.2 to select a sample, but this time select only one random
number from Table 2.1. Start in the row determined by the index for that ran-
dom number. Choose the first value from the first column in that row; then
skip the next seven columns and select the second value from column 8. Con-
tinue skipping seven consecutive values before selecting the next value.
When you come to the end of the row, continue the procedure on the next
row. What kind of sampling procedure is this? Can bias be introduced when
you sample in this way?

From the 400 height measurements in Table 2.2, we will take a sample of ten
distinct values by taking the first six values in row 1 and the two values in the
last two columns in row 2 and the last two columns in row 3. Let these ten
values comprise the sample. Draw a sample of size 10 by sampling with re-
placement from these 10 measurements.

a. List the original sample and the sample generated by sampling with re-

placement from it.
b. What do we call the sample generated by sampling with replacement?

Repeat the procedure of Exercise 2.11 five times. List all five samples. How
do they differ from the original sample?

Describe the population and the sample for:
a. Exercise 2.9
b. The bootstrap sampling plan in Exercise 2.11

Suppose you selected a sample from Table 2.2 by starting with the number in
row 1, column 2. You then proceed across the row, skipping the next five
numbers and take the sixth number. You continue in this way, skipping five
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numbers and taking the sixth, going to the leftmost element in the next row
when all the elements in a row are exhausted, until you have exhausted the
table.

a. What is such a sample selection scheme called?

b. Could any possible sources of bias arise from using this scheme?
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CHAPTER 3

Systematic Organization
and Display of Data

The preliminary examination of most data is facilitated by the use
of diagrams. Diagrams prove nothing, but bring outstanding fea-
tures readily to the eye; they are therefore no substitutes for such
critical tests as may be applied to the data, but are valuable in
suggesting such tests, and in explaining the conclusions founded

upon them.
—Sir Ronald Alymer Fisher, Statistical Methods for Research Workers, p. 27

This chapter covers methods for organizing and displaying data. Such methods pro-
vide summary information about a data set and may be used to conduct exploratory
data analyses. We will discuss types of data used in biostatistics, methods for de-
scribing how data are distributed (e.g., frequency tables and histograms), and meth-
ods for displaying data graphically. The methods for providing summary informa-
tion are essential to the development of hypotheses and to establishing the
groundwork for more complex statistical analyses. Chapter 4 will cover specific
summary statistics: e.g., the mean, mode, and standard deviation.

3.1 TYPES OF DATA

The methods for displaying and analyzing data depend upon the type of data being
used. In this section, we will define and provide examples of the two major types of
data: qualitative and quantitative. Quantitative data can be continuous or discrete.
Chapter 11 will give more information about the related topic of measurement sys-
tems. We collect data to characterize populations and to estimate parameters, which
are numerical or categorical characteristics of a population probability distribution.
In order to describe types of data, we need to be familiar with the concept of
variables. The term “variable” is used to describe a quantity that can vary (i.e., take
on various values), such as age, height, weight, or sex. Variables can be characteris-
tics of a population, such as the age of a randomly selected individual in the U.S.

46 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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population. They can also be estimates (statistics) of population parameters such as
the mean age of a random sample of 100 individuals in the U.S. population. These
variables will have probability distributions associated with them and these distrib-
utions will be discussed in Chapter 5.

3.1.1 Qualitative Data

Variables that can be identified for individuals according to a quality are called
qualitative variables. These variables place individuals into categories that do not
have numerical values. When the observations are not ordered, they form a nominal
scale. (A dichotomous scale—true/false, male/female, yes/no, dead/alive—also is a
nominal scale.) Many qualitative variables cannot be ordered (as in going from
worst to best). Occupation, marital status, and sex are examples of qualitative data
that have no natural ordering. The term nominal refers to qualitative data that do not
have a natural ordering.

Some qualitative data can be ordered in the manner of a preference scale (e.g.,
strongly agree, agree, disagree, strongly disagree). Levels of educational attainment
can be ordered from low to moderate to high: less than a high school education
might be categorized as low; education beyond high school but without a four year
bachelor’s degree could be considered moderate; a four year bachelor’s degree
might be considered high; and a degree at the masters, Ph.D., or M.D. level consid-
ered very high. Although still considered qualitative, categorical data that can be or-
dered are called ordinal.

Qualitative data can be summarized and displayed in pie charts and bar graphs,
which describe the frequency of occurrence in the sample or the population of par-
ticular values of the characteristics. These graphical representations will be de-
scribed in Section 3.3. For ordinal data with the categories ordered from lowest to
highest, bar graphs might be more appropriate than pie charts. Because a pie chart is
circular, it is more appropriate for nominal data.

3.1.2 Quantitative Data

Quantitative data are numerical data that have a natural order and can be continuous
or discrete. Continuous data can take on any real value in an interval or over the
whole real number line. Continuous data can be classified as interval. Continuous
data also can be summarized with box-and-whisker plots, histograms, frequency
polygons, and stem-and-leaf displays. Examples of continuous data include vari-
ables such as age, height, weight, heart rate, blood pressure, and cholesterol level.

Discrete data take on only a finite or countable (equivalent to the set of integers)
number of values. Examples of discrete data are the number of children in a house-
hold, the number of visits to a doctor in a year, or the number of successful ablation
treatments in a clinical trial. Often, discrete data are integers or fractions. Discrete
data can be described and displayed in histograms, frequency polygons, stem-and-
leaf displays, and box-and-whisker plots (see Section 3.3).

If the data can be ordered, and we can identify ratios with them, we call the data
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ratio data. For example, integers form a quantitative discrete set of numbers that are
ratio data; we can quantify 2 as being two times 1, 4 as two times 2, and 6 as three
times 2. The ability to create ratios distinguishes quantitative data from qualitative
data. Qualitative ordinal data can be ordered but cannot be used to produce ratios.
We cannot say, for example, that a college education is worth twice as much as a
high school education.

Continuous interval data can be used to produce ratios but not all ratio data are
continuous. For example, the integers form a discrete set that can produce ratios,
but such data are not interval data because of the gaps between consecutive inte-
gers.

3.2 FREQUENCY TABLES AND HISTOGRAMS

A frequency table provides one of the most convenient ways to summarize or dis-
play grouped data. Before we construct such a table, let us consider the following
numerical data. Table 3.1 lists 120 values of body mass index data from the 1998
National Health Interview Survey. The body mass index (BMI) is defined as
[Weight (in kilograms)/Height (in meters) squared]. According to established stan-
dards, a BMI from 19 to less than 25 is considered healthy; a BMI from 25 to less
than 30 is regarded as overweight; a BMI greater than or equal to 30 is defined as
obese. Table 3.1 arranges the numbers in the order in which they were collected.

In constructing a frequency table for grouped data, we first determine a set of
class intervals that cover the range of the data (i.e., include all the observed values).
The class intervals are usually arranged from lowest numbers at the top of the table
to highest numbers at the bottom of the table and are defined so as not to overlap.
We then tally the number of observations that fall in each interval and present that
number as a frequency, called a class frequency. Some frequency tables include a

TABLE 3.1. Body Mass Index for a Sample of 120 U.S. Adults

274 31.0 342 28.9 25.7 37.1 24.8 34.9 27.5 25.9
23.5 30.9 27.4 259 223 213 37.8 28.8 28.8 234
21.9 30.2 24.7 36.6 254 21.3 229 24.2 27.1 23.1
28.6 273 22.7 22.7 273 23.1 223 32.6 29.5 38.8
21.9 243 26.5 30.1 27.4 24.5 22.8 243 30.9 28.7
224 359 30.0 26.2 274 24.1 19.8 26.9 233 28.4
20.8 26.5 28.2 18.3 30.8 27.6 21.5 33.6 24.8 28.3
25.0 35.8 254 273 23.0 25.7 223 355 29.8 27.4
313 24.0 25.8 21.1 21.1 29.3 24.0 22.5 32.8 38.2
273 19.2 26.6 30.3 31.6 254 34.8 24.7 25.6 28.3
26.5 28.3 35.0 20.2 37.5 25.8 27.5 28.8 31.1 28.7
24.1 24.0 20.7 24.6 21.1 21.9 30.8 24.6 332 31.6

Source: Adapted from the National Center for Health Statistics (2000). Data File Documentation, Na-
tional Health Interview Survey, 1998 (machine readable data file and documentation, CD-ROM Series
10, No 13A), National Center for Health Statistics, Hyattsville, Maryland.
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column that represents the frequency as a percentage of the total number of obser-
vations; this column is called the relative frequency percentage. The completed fre-
quency table provides a frequency distribution.

Although not required, a good first step in constructing a frequency table is to re-
arrange the data table, placing the smallest number in the first row of the leftmost
column and then continuing to arrange the numbers in increasing order going down
the first column to the top of the next row. (We can accomplish this procedure by
sorting the data in ascending order.) After the first column is completed, the proce-
dure is continued starting in the second column of the first row, and continuing un-
til the largest observation appears in the rightmost column of the bottom row.

We call the arranged table an ordered array. It is much easier to tally the obser-
vations for a frequency table from such an ordered array of data than it is from the
original data table. Table 3.2 provides a rearrangement of the body mass index data
as an ordered array.

In Table 3.2, by inspection we find that the lowest and highest values are 18.3
and 38.8, respectively. We will use these numbers to help us create equally spaced
intervals for tabulating frequencies of data. Although the number of intervals that
one may choose for a frequency distribution is arbitrary, the actual number should
depend on the range of the data and the number of cases. For a data set of 100 to
150 observations, the number chosen usually ranges from about five to ten. In the
present example, the range of the data is 38.8 — 18.3 = 20.5. Suppose we divide the
data set into seven intervals. Then, we have 20.5 + 7 = 2.93, which rounds to 3.0.
Consequently, the intervals will have a width of three. These seven intervals are as
follows:

1. 18.0-20.9
2. 21.0-239
3. 24.0-26.9

TABLE 3.2. Body Mass Index Data for a Sample of 120 U.S. Adults: Ordered Array
(Sorted in Ascending Order)

18.3 21.9 23.0 24.3 25.4 26.6 27.5 28.8 30.9 34.8
19.2 219 23.1 243 25.6 26.9 27.5 28.8 30.9 349
19.8 21.9 23.1 24.5 25.7 27.1 27.6 28.9 31.0 35.0
20.2 223 233 24.6 25.7 273 28.2 29.3 31.1 355
20.7 223 234 24.6 25.8 273 283 29.5 313 35.8
20.8 223 23.5 24.7 25.8 273 283 29.8 31.6 359
21.1 224 24.0 24.7 25.9 273 283 30.0 31.6 36.6
21.1 22.5 24.0 24.8 25.9 27.4 284 30.1 32.6 37.1
21.1 22.7 24.0 24.8 26.2 27.4 28.6 30.2 32.8 37.5
21.3 22.7 24.1 25.0 26.5 27.4 28.7 30.3 332 37.8
213 22.8 24.1 254 26.5 274 28.7 30.8 33.6 38.2
21.5 229 242 25.4 26.5 27.4 28.8 30.8 342 38.8
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4. 27.0-299
5. 30.0-32.9
6. 33.0-359
7. 36.0-38.9

Table 3.3 presents a frequency distribution and a relative frequency distribution (%)
of the BMI data.

A cumulative frequency (%) table provides another way to display a frequency
distribution. In a cumulative frequency (%) table, we list the class intervals and the
cumulative relative frequency (%) in addition to the relative frequency (%). The cu-
mulative relative frequency or cumulative percentage gives the percentage of cases
less than or equal to the upper boundary of a particular class interval. The cumula-
tive relative frequency can be obtained by summing the relative frequencies in a
particular row and in all the preceding class intervals. Table 3.4 lists the relative fre-
quencies and cumulative relative frequencies for the body mass index data.

A histogram presents the same information as a frequency table in the form of a
bar graph. The endpoints of the intervals are displayed as the x-axis; on the y-axis

TABLE 3.3. Body Mass Index (BMI) Data (n = 120)

Class Interval for Cumulative Relative
BMI Levels Frequency (f) Frequency (cf) Frequency (%)
18.0-20.9 6 6 5.00
21.0-23.9 24 30 20.00
24.0-26.9 32 62 26.67
27.0-29.9 28 90 23.33
30.0-32.9 15 105 12.50
33.0-35.9 9 114 7.50
36.0-38.9 6 120 5.00
Total 120 — 100.00

TABLE 3.4. Relative Frequency Table of BMI Levels

Class Interval for Cumulative Relative
BMI Levels Relative Frequency (%) Frequency (%)
18.0-20.9 5.00 5.00
21.0-23.9 20.00 55.00
24.0-26.9 26.67 51.67
27.0-29.9 23.33 75.00
30.0-32.9 12.50 87.50
33.0-35.9 7.50 95.00
36.0-38.9 5.00 100.00

Total 100.00 100.00
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the frequency is represented, shown as a bar with the frequency as the height. We
call a histogram a relative frequency histogram if we replace the frequency on the
y-axis with the relative frequency expressed as a percent. Refer to Section 3.3 for
examples using the body mass index.

Table 3.5 summarizes Section 3.2 by providing guidelines for creating frequency
distributions of grouped data.

3.3 GRAPHICAL METHODS

A second way to display data is through the use of graphs. Graphs give the reader
an overview of the essential features of the data. Generally, visual aids provided by
graphs are easier to read than tables, although they do not contain all the detail that
can be incorporated in a table.

Graphs are designed to provide visually an intuitive understanding of the data.
Effective graphs are simple and clean: thus, it is important that the graph be self-ex-
planatory (i.e., have a descriptive title, properly labeled axes, and an indication of
the units of measurement).

Using the BMI data, we will illustrate the following seven graphical methods:
histograms, frequency polygons, cumulative frequency polygons, stem-and-leaf
displays, bar charts, pie charts, and box-and-whisker plots.

3.3.1 Frequency Histograms

As we mentioned previously, a frequency histogram is simply a bar graph with the
class intervals listed on the x-axis and the frequency of occurrence of the values in the
interval on the y-axis. Appropriate labeling is important. For the BMI data described
earlier, Figure 3.1 provides an appropriate example of a frequency histogram.
Proper graphing of statistical data is an art, governed by what we would like to
communicate. Several excellent books provide helpful guidelines for proper graph-
ics. Among the most popular books are two by Edward Tufte [Tufte (1983, 1997)].

TABLE 3.5. Guidelines for Creating Frequency Distributions from Grouped Data

1. Find the range of values—the difference between the highest and lowest values.

2. Decide how many intervals to use (usually choose between 6 and 20 unless the data set is
very large). The choice should be based on how much information is in the distribution
you wish to display.

3. To determine the width of the interval, divide the range by the number of class intervals
selected. Round this result as necessary.

4. Be sure that the class categories do not overlap!

5. Most of the time, use equally spaced intervals, which are simpler than unequally spaced
intervals and avoid interpretation problems. In some cases, unequal intervals may be
helpful to emphasize certain details. Sometimes wider intervals are needed where the
data are sparse.
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Figure 3.1. Frequency histogram of the BMI data.

Huff’s (1954) popular book illustrates how playing tricks with the scales on a plot
can distort information and mislead the reader. These experts provide sage guidance
regarding construction of graphs.

Figure 3.2 provides a graph, called a relative frequency histogram, of the same
data as in Figure 3.1 with the height of the y-axis represented by the relative fre-
quency (%) rather than the actual frequency. By comparing Figures 3.1 and 3.2, you
can see that the shapes of the graphs are similar.

Here the magnitude of the relative frequency is determined strictly by the height
of the bar; the width of the bar should be ignored. For equally spaced class inter-
vals, the height of the bar multiplied by the width of the bar (i.e., the area of the bar)
also can represent the proportion of the cases in the given class.
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Figure 3.2. Relative frequency histogram for the BMI data.
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In Chapter 5, when we discuss probability distributions, we will see that when
properly defined, relative frequency histograms are useful in approximating proba-
bility distributions. In such cases, the area of the bar represents the percentage of
the cases in the interval. When the class intervals have varying lengths, we need to
adjust the height of the bar so that the area, not the height, is proportional to the per-
centage of cases. For example, if two intervals each contain 10% of the sampled
cases but one has a width of 2 units and the other a width of 4 units, we would re-
quire that the intervals with width 4 units have one-half of the height of the interval
with a width of 2 units.

Figure 3.3 provides a relative frequency histogram for the same BMI data except
that we have combined the second and third and fifth and sixth class intervals into
one interval; the resulting frequency distribution has five class intervals instead of
the original seven.

The first, third, and fifth intervals all have a width of 3 units, whereas the sec-
ond and fourth intervals have a width of 6 units. Consequently, the relative per-
centages are represented correctly by the height of the histogram but not by the
area. The excessive height of the second and fourth intervals is corrected by di-
viding the height (i.e., frequency) of these intervals by 2. Figure 3.4 shows the ad-
justed histogram.

Figure 3.5 presents a cumulative frequency histogram in which the frequency in
the interval is replaced by the cumulative frequency, as we demonstrated in the cu-
mulative frequency tables. The analogous figure for cumulative relative frequency
(%) is shown in Figure 3.6.

3.3.2 Frequency Polygons

Frequency polygons are very similar to frequency histograms. However, instead of
placing a bar across the interval, the height of the frequency or relative frequency is
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18.0-20.9 21.0-26.9 27.0-29-9 30.0-35.9 36.0-38.9

Class Intervals

Figure 3.3. BMI data: relative frequency histogram with unequally spaced intervals.
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Figure 3.4. BMI data: relative frequency histogram with unequally spaced intervals (height adjusted for
correct area).

plotted at the midpoint of the class interval; these points are then connected by
straight lines creating a polygonal shape, hence the name frequency polygon.

Figures 3.7 and 3.8 represent, respectively, a frequency polygon and relative fre-
quency polygon for the BMI data. These figures are analogous to the histograms
presented in Figures 3.1 and 3.2, respectively.

3.3.3 Cumulative Frequency Polygon

A cumulative frequency polygon, or ogive, is similar to a cumulative frequency his-
togram. The height of the function represents the sum of the frequencies in all the
class intervals up to and including the current one. The only differences between a
cumulative frequency polygon and a cumulative frequency histogram are that the
height is taken at the midpoint of the class interval and the points are connected by
straight lines instead of being represented by bars. Figures 3.9 and 3.10 represent,
respectively, the cumulative frequency polygon and cumulative relative frequency
polygon for the BMI data.
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Figure 3.5. Cumulative frequency histogram for BMI data.
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Figure 3.9. Cumulative frequency polygon (ogive) for BMI data.

3.3.4 Stem-and-Leaf Diagrams

Histograms summarize a dataset and provide an idea of the shape of the distribution
of the data. However, some information is lost in the summary. We are not able to
reconstruct the original data from the histogram.

John W. Tukey created an innovation in the 1970s that he termed the “stem-and-
leaf diagram.” Tukey (1977) elaborates on this method and other innovative ex-
ploratory data analysis techniques. The stem-and-leaf diagram not only provides the
desirable features of the histogram, but also gives us a way to reconstruct the entire
data set from the diagram. Consequently, we do not lose any information by con-
structing the plot.

The basic idea of a stem-and-leaf diagram is to construct “stems” that represent
the class intervals and to have “leaves” that exhibit all the individual values. Let us
demonstrate the technique with the BMI data. Recall that these data ranged from a
lowest value of 18.3 to a highest value of 38.8. The class groups will be the integer
part of each number; any value from 18.0 to 18.9 will belong to the first stem, from
19.0 to 19.9 to the second stem, and continuing to the highest value in the dataset.
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Figure 3.10. Cumulative relative frequency polygon for BMI data.
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To form the leaves, we place a single digit for each observation that belongs to
that class interval (stem). The value used will be the single digit that appears after
the decimal point. If a particular value is repeated in the data set, we repeat that val-
ue on the leaf as many times as it appears in the data set. Usually the numbers on the
leaf are placed in increasing order. In this way, we can exhibit all of the data. Inter-
vals that include more observations than others will have longer leaves and thus
produce the frequency appearance of a histogram. The display of the BMI data is:

18. 3

19. 28

20. 278

21. 111335999
22. 333457789
23. 011345

24. 000112335667788
25. 04446778899
26. 255569

27. 1333344444556
28. 233346778889
29. 358

30. 01238899

31. 01366

32. 68

33. 62

34. 289

35. 0589

36. 6

37. 158

38. 28

From this display, we are able to reach several conclusions about the frequency
of cases in each interval and the shape of the distribution, and even reconstruct the
original dataset, if necessary. First, it is apparent that the intervals that contain the
highest and second-highest frequencies of observations are 24.0 to 24.9 and 25.0 to
25.9, respectively. Also, empty or low-frequency intervals such as 36.0 to 36.9 are
recognized easily. Second, the shape of the distribution is also easy to visualize; it
resembles a histogram placed sideways. The individual digits on the leaves repre-
sent all of the 120 observations.

The frequencies associated with each of the class intervals are calculated by to-
taling the number of digits on the corresponding leaf. Each individual value can be
reconstructed by observing its stem and leaf value. For example, the 9 in the fourth
row of the diagram represents the value “21.9” because 21 is the stem for that row
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and 9 is the leaf value. The stem represents the digits to the left of the decimal place
and the leaf the digit to the right.

Table 3.5 reconstructs the stem-and-leaf diagram shown in the foregoing dis-
play. In addition, the table illustrates the class interval associated with the stem and
provides the frequency counts obtained from the leaves.

3.3.5 Box-and-Whisker Plots

John W. Tukey created another scheme for data analysis, the box-and-whisker plot.
The box-and-whisker plot provides a convenient and compact picture of the general
shape of a data distribution. Although it contains less information than a histogram,
the Box-and-Whisker plot can be very useful in comparing one distribution to other
distributions. Figure 3.11 presents a box-and-whisker plot in which the distribution
of weights is compared for patients diagnosed with cancer, diabetes, and coronary
heart disease. From the figure, we can see that although the distributions overlap,
the average weight increases for each of these diagnoses.

To define a box-and-whisker plot, we must give definitions of several terms re-
lated to the distribution of a data set; these terms are the median, a-percentile, and

TABLE 3.5. Stem-and-Leaf Display for BMI Data

Stems (Intervals) Leaves (Observations) Frequency
18.0-18.9 3 1
19.0-19.9 28 2
20.0-20.9 278 3
21.0-21.9 111335999 9
22.0-22.9 333457789 9
23.0-23.9 011345 6
24.0-24.9 000112335667788 15
25.0-25.9 04446778899 11
26.0-26.9 255569 6
27.0-27.9 1333344444556 13
28.0-28.9 233346778889 12
29.0-29.9 358 3
30.0-30.9 01238899 8
31.0-31.9 01366 5
32.0-32.9 68 2
33.0-33.9 62 2
34.0-34.9 289 3
35.0-35.9 0589 4
36.0-36.9 6 1
37.0-37.9 158 3
38.0-38.9 28 2

Total 120
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Figure 3.11. Box-and-whisker plot for female patients who have cancer, diabetes, and coronary heart
disease (CHD). (Source: Robert Friis, unpublished data.)

the interquartile range. The median of a data set is the value of the observation that
divides the ordered dataset in half. Essentially, the median is the observation whose
value defines the midpoint of a distribution; i.e., half of the data fall above the me-
dian and half below.

A precise mathematical definition of a median is as follows: If the sample size n
is odd, then n = 2m + 1, where m is an integer greater than or equal to zero. The me-
dian then is taken to be the value of the m + 1 observation ordered from smallest to
largest. If the sample size n is even, then n = 2m where m is an integer greater than
or equal to 1. Any value between the mth and m + 1st values ordered from smallest
to largest could be the median, as there would be m observed values below it and m
observed values above it. When » is even, a convention that makes the median
unique is to take the average of the mth and m + 1st observations (i.e., the sum of
the two values divided by 2).

The a-percentile is defined as the value such that « percent of the observations
have values lower than the a-percentile value; 100 — « percent of the observations
are above the a-percentile value. The quantity « is a number between 0 and 100.
The median is a special case in which the a = 50.

We use specific a-percentiles for box-and-whisker plots. We can draw these
plots either horizontally, or vertically as in the case of Figure 3.11. The a-per-
centiles of interest are for « = 1, 5, 10, 25, 50, 75, 90, 95, and 99. A box-and-
whisker plot, based on these percentiles, is represented by a box with lines (called
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whiskers) extending out of the box in both north and south directions. These lines
terminate with bars perpendicular to them. The lower end of the box represents
the location of the 25th percentile of the distribution. Inside the box, a line is
drawn to mark the location of the median, or 50th percentile, of the distribution.
The upper end of the box represents the location of the 75th percentile of the dis-
tribution.

The length of the box is called the interquartile range, the range of values that
constitute the middle half of the data. Out of the upper and lower ends of the box are
the lines extending to the perpendicular bars called whiskers, which represent ex-
tremes of the distribution.

While there are no consistent standards for defining the extremes, people who
construct the plots need to be very specific about the meaning of these extremes.
Often, these extremes correspond to the smallest and largest observations, in which
case the length from the end of the whisker on the bottom to the end of the whisker
on the top is the range of the data.

In many applications, the ends of the whiskers represent a-percentiles. For ex-
ample, choices can be 1 for the end of the lower whisker and 99 for the end of the
upper whisker, or 5 for the lower whisker and 95 for the upper whisker. The forego-
ing are the most common choices; however, sometimes 10 and 90 are used for the
lower and upper whiskers, respectively.

Sometimes, we consider the minimum (i.e., the smallest value in the data set)
and the maximum (i.e., the largest value in the data set) to be the ends of whiskers.
In this text, we will assume that the endpoints of the whiskers are the minimum and
maximum values of the data. If other percentiles are used, we will be careful to state
their values.

The box plot is very useful for indicating the presence or absence of symmetry
and for comparing spread or variability of two or more data sets. If the distribution
is not symmetric, it is possible that the median will not be in the center of the box
and that the whiskers will not be the same length. Looking at box plots is a very
good first step to take when analyzing data.

If a box-and-whisker plot indicates the presence of symmetry, the distribution
may be a normal distribution. Symmetry means that if we split the distribution (i.e.,
probability density function) at the median, the half to the right will be the mirror
image of the half to the left. For a box-and-whisker plot that shows a symmetric dis-
tribution: (1) the median will be in the middle of the box; and (2) the right and left
whiskers will have equal lengths. Regardless of the definition we choose for the
ends of the whiskers, points one and two will be true.

Concluding this section, we note that Chapters 5 and 6, respectively, describe
probability distributions and the normal distribution. The normal, or Gaussian, dis-
tribution is a symmetric distribution used for many applications. When the data
come from a normal distribution, the sample should appear to be nearly symmetric.
So for normally distributed data, we expect the box-and-whisker plot to have a me-
dian near the center of the box and whiskers of nearly equal width. Large deviations
from the model of symmetry suggest that the data do not come from a normal distri-
bution.
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3.3.6 Bar Graphs and Pie Charts

Bar graphs and pie charts are useful tools for summarizing categorical data. A bar
graph has the same form as a histogram. However, in a histogram the values on the
x-axis represent intervals of numerically ordered data. Consequently, as we move
from left to right on the x-axis, the intervals represent increasing values of the vari-
able under study. As categorical data do not exhibit ordering, the ordering of the
bars is arbitrary. Meaning is assigned only to the height of the bar, which represents
the frequency or relative frequency of occurrence of cases that belong to that partic-
ular class interval. In addition, the width of the bar has no meaning.

Pie charts depict the same information as do bar graphs, but in the shape of a cir-
cle or pie. The circle is divided into wedges, one for each category of the data. The
size of each wedge is determined by its angular measurement. Since a circle con-
tains 360°, a wedge that contains 50% of the cases would have an angular measure-
ment of 180°. In general, if the wedge is to contain « percent of the cases, then the
angle for the wedge will be 360a/100°. Figure 3.12 illustrates a pie chart of categor-
ical data. Using data from a research study of clinic patients, the figure presents the
proportions of female patients who were diagnosed with cancer, diabetes, and coro-
nary heart disease.

We can use pie charts also to represent ordinal data. Table 3.6 presents data re-
garding a characteristic called the Pugh level, a measure of the severity of liver dis-
ease. Figure 3.13 illustrates these data in the form of a pie chart. Based on 24 pedi-
atric patients with liver disease, this pie chart presents ordinal data, which indicate
severity of the disease. As an alternative to a pie chart, Figure 3.14 shows a bar
graph for the same Pugh data presented in Table 3.6.

DIABETES

Figure 3.12. Pie chart—proportions of patients diagnosed with cancer, diabetes, and coronary heart dis-
ease (CHD). (Source: Robert Friis, unpublished data.)
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TABLE 3.6. Pugh Categories and Pugh Severity Levels

Pugh Category Pugh Severity Level
1 0
2 5
3 6
4 7
5 8
6 10
7 11

Note: For these data, the Pugh categories are 1-7, corresponding to
Pugh levels 0-11.
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Figure 3.13. Pie chart for Pugh level for 24 children with liver disease.
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Figure 3.14. Relative frequency bar graph for Pugh categories of 24 pediatric patients with liver dis-

€ase.
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EXERCISES

Define the term “variable” and describe the following types of variables:
a. Qualitative
(1) Nominal
(2) Ordinal
b. Quantitative
(1) Interval
(2) Ratio
c. Discrete versus continuous

The following terms relate to frequency tables. Define each term.
a. Class interval

b. Class frequency

c. Relative frequency percentage

d. Cumulative frequency

e. Cumulative relative frequency

f. Cumulative percentage

Define the following graphical methods and describe how they are used.
a. Histogram

b. Relative frequency histogram

c. Frequency polygon

d. Cumulative frequency polygon (ogive)

How does one construct a stem-and-leaf diagram? What are the advantages of
this type of diagram?

How may the box-and-whisker plot be used to describe data? How are the fol-
lowing terms used in a box-and-whisker plot?

a. Median

b. Alpha percentile

c. Interquartile range

Refer to the following dataset that shows the class interval (and frequency in
parentheses):

{0.0-0.4 (20); 0.5-0.9 (30); 1.0-1.4 (50); 1.5-1.9 (40); 2.0-2.4 (10);
2.5-2.9 (20); 3.0-3.4 (20); 3.5-3.9 (10)}

Construct a relative frequency histogram, a cumulative frequency histogram,
a relative frequency (%) histogram, a cumulative relative frequency (%) his-
togram, a frequency polygon, and a relative frequency polygon. Describe the
shapes of these graphs. What are the midpoint and limits of the interval,
2.0-2.4?

Using the data in Table 3.7, construct a frequency table with nine intervals
and then calculate the mean and median blood levels.



64

3.8

3.9

3.10

3.11

SYSTEMATIC ORGANIZATION AND DISPLAY OF DATA

TABLE 3.7. Blood Levels (mg/dl) of 50 Subjects

4.9 233 39 2.5 7.6
5.5 3.9 1.0 5.0 4.2
7.6 0.7 1.6 22 4.0
2.3 14.1 1.0 6.1 5.4
1.2 43 4.8 0.7 4.8
0.7 39 1.5 8.0 6.5
4.1 6.9 2.9 2.1 2.8
1.5 2.0 1.1 10.6 2.0
6.7 32 1.6 0.7 9.0
2.1 2.7 35 8.2 4.4

Source: U.S. Department of Health and Human Services (DHHS). National Center for
Health Statistics. Third National Health and Nutrition Examination Survey,
1988-1994, NHANES III Laboratory Data File (CD-ROM). Public Use Data File
Number 76200. Hyattsville, MD: Centers for Disease Control and Prevention, 1996.

Take the data set from Exercise 3.7 and order the observations from smallest
to largest. Determine the lower and the upper quartiles and generate a box-
and-whiskers plot for the data using the smallest and largest observations for
the whiskers.

Take the data from Exercise 3.7 and construct a stem-and-leaf plot using the
integer part of the number for the stem and the digit to the right of the decimal
point for the leaf.

Consider the following data set: {3, 4, 8,5,7,2,5,6,5,9,7, 8, 6,4, 5}. De-
termine the median and quartiles, and the minimum and maximum values.

Using the data presented in Table 3.8, calculate the mean, median, and quar-
tiles, and construct a box-and-whisker plot.

TABLE 3.8. Ages of Patients in a Primary Care Medical Clinic (n = 50)

18 14 22 34 86
105 72 44 49 64
90 98 65 26 33
88 62 70 61 57
12 17 21 101 15
22 24 51 56 27
85 81 94 93 86
83 100 104 55 66
89 56 61 50 57

53 94 58 59 99




3.4 EXERCISES 65

3.12

3.13

3.14

3.15

3.16

3.17

Construct a frequency histogram and a cumulative frequency histogram with
the data from Exercise 3.11 using the following class intervals: 10-19, 20-29,
30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99, 100-109.

Construct a stem-and-leaf plot with the data from Exercise 3.11.

Classify the following data as either (1) nominal, (2) ordinal, (3) interval, or

(4) ratio.

. The names of the patients in a clinical trial

. A person’s weight

. A person’s age in years

. A person’s blood type

. Your top ten list of professional basketball players ranked in ascending
order of preference

f. The face of a coin that lands up (a head or a tail)

[>T o B = i

The following questions (a-d) refer to the data presented in Table 3.9.

a. Construct a frequency table with the class intervals 0-1, 2-3, 4-5, 6-7,
8-9, 1011, and 12-13.

b. Construct a frequency histogram of the weight losses.

c. Construct a frequency polygon and describe the shape of the distribution.

d. What is the most common weight loss?

The FBI gathers data on violent crimes. For 20,000 murders committed over
the past few years, the following fictitious data set represents the classifica-
tion of the weapon used to commit the crime.

12,500 committed with guns
2,000 with a knife

5000 with hands

500 with explosives

Construct a pie chart to describe this data.

In 1961, Roger Maris broke Babe Ruth’s home run record by hitting 61 home
runs. Ruth’s record was 60. The following set of numbers is the consecutive
list of home run totals that Ruth collected over a span of 15 seasons as a Yan-

TABLE 3.9. Weight Loss in Pounds of Individuals on a Five-Week
Weight Control Program (n = 25)

9 5 2 1 3
11 11 10 8 9
6 4 8 10 9
12 11 7 11 13
10 11 5 4 11
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kee: 54, 59, 35, 41, 46, 25, 47, 60, 54, 46, 49, 46, 41, 34, 22. Maris had a 10-

year career in the American League before joining the St. Louis Cardinals in

the National League at the end of his career. Here is the list of home runs

Maris hit during his 10 years: 14, 28, 16, 39, 61, 33, 23, 26, 8, 13

a. Find the seasonal median number of home runs for each player.

b. For each player, determine the minimum, the first quartile, the median, the
third quartile, and the maximum of their home run totals. Use these results
to construct comparative box-and-whisker plots. These five numbers that
highlight a box plot are called the five-number summary.

c. How do the two distributions differ based on the box plots?

In 1998, Mark McGwire broke Roger Maris’ home run record of 61 by hitting
70 home runs. Incredibly, in the same year Sammy Sosa also broke the
record, hitting 66. Again, in 1999 both players broke Maris’ mark but did not
top their 1998 results: McGwire hit 65 and Sosa 63. In 2001, another slugger,
Barry Bonds, whose top home run total was 49 in 2000, broke McGwire’s
record with 73 home runs. Here we present the seasonal home run totals for
McGwire over his major league career starting with his rookie 1987 season,
along with those for Sammy Sosa, Barry Bonds and Ken Griffey Jr.

McGwire 49,32, 33,39, 22,42, 9,9, 39, 52, 58, 70, 65, 32

Sosa 4,15, 10, 8, 33, 25, 36, 40, 36, 66, 63, 50

Bonds  16,25,24, 19,33, 25, 34, 46, 37, 33, 42, 40, 37, 34, 49
Griffey 16,22, 22,27, 45,40, 17, 49, 56, 56, 48, 40

McGwire’s low totals of 9 in 1993 and 1994 are explained by a combina-
tion of the baseball strike that cancelled many games and some injuries he
sustained. Sosa’s rookie year was 1989. His home run totals were fairly high
during the strike years. Bonds’ rookie year was 1986. He has been a consis-
tent home run hitter but has never before approached the total of 60 home
runs.

Ken Griffey Jr. had a spectacular start during the strike season, and many
thought he would have topped Maris that year had there not been a strike.
Griffey’s rookie year was 1989. In the strike-shortened season of 1993, Grif-
fey hit 45 home runs; he has approached 60 twice.

a. Find the seasonal median number of home runs for each player.

b. For each player, determine the minimum, the first quartile, the median, the
third quartile, and the maximum of their home run totals. Use these results
to construct comparative box-and-whisker plots.

c. What are the similarities and differences among these famous sluggers?

In 2001, due to injury, McGwire hit only 29 home runs; Sosa hit 64 home
runs; Bonds hit 73 home runs for a new major league record; and Griffey hit
22. Their current career home runs are as follows:

McGwire 49, 32, 33,39, 22,42,9,9, 39, 52, 58, 70, 65, 32, 29
Sosa 4, 15, 10, 8, 33, 25, 36, 40, 36, 66, 63, 50, 64
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Bonds 16, 25, 24, 19, 33, 25, 34, 46, 37, 33, 42, 40, 37, 34, 49, 73
Griffey 16, 22,22, 27, 45, 40, 17, 49, 56, 56, 48, 40, 22

a. Find the seasonal median number of home runs for each player.

b. For each player, determine the minimum, the first quartile, the median, the
third quartile and the maximum of their home run totals. Use these results
to construct comparative box-and-whisker plots.

c. What are the similarities and differences among these famous sluggers?

d. Did the results from 2001 change your conclusions from the previous
problem? If so, how did they change and why?

ADDITIONAL READING

The books listed here provide further insight into graphical methods and explorato-
ry data analysis. Some were referenced earlier in this chapter. The reader should be
aware that Launer and Siegel (1982) and du Toit et al. (1986) are advanced texts,
appropriate for those who have mastered the present text.
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CHAPTER 4

Summary Statistics

A want of the habit of observing and an inveterate habit of taking

averages are each of them often equally misleading.
—Florence Nightingale, Notes on Nursing, Chapter XIII

4.1 MEASURES OF CENTRAL TENDENCY

The previous chapter, which discussed data displays such as frequency histograms
and frequency polygons, introduced the concept of the shape of distributions of
data. For example, a frequency polygon illustrated the distribution of body mass in-
dex data. Chapter 4 will expand on these concepts by defining measures of central
tendency and measures of dispersion.

Measures of central tendency are numbers that tell us where the majority of values
in the distribution are located. Also, we may consider these measures to be the center
of the probability distribution from which the data were sampled. An example is the
average age in a distribution of patients’ ages. Section 4.1 will cover the following
measures of central tendency: arithmetic mean, median, mode, geometric mean, and
harmonic mean. These measures also are called measures of location. In contrast to
measures of central tendency, measures of dispersion inform us about the spread of
values in a distribution. Section 4.2 will present measures of dispersion

4.1.1 The Arithmetic Mean

The arithmetic mean is the sum of the individual values in a data set divided by the
number of values in the data set. We can compute a mean of both a finite population
and a sample. For the mean of a finite population (denoted by the symbol ), we
sum the individual observations in the entire population and divide by the popula-
tion size, N. When data are based on a sample, to calculate the sample mean (denot-
ed by the symbol (X) we sum the individual observations in the sample and divide
by the number of elements in the sample, n. The sample mean is the sample analog
to the mean of a finite population. Formulas for the population (4.1a) and sample
means (4.1b) are shown below; also see Table 4.1.

68 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
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TABLE 4.1. Calculation of Mean
(Small Population, N =5)

Index (i) X
1 70
2 80
3 95
4 100
5 125
p 470
N
= ;Xi _ A0 94
2N 75

Population mean (w):

N
2.
w= i=1

N (4.1a)
where X; are the individual values from a finite population of size V.
Sample mean (X):
X
x=- (4.1b)

n

where X; are the individual values of a sample of size n.

The population mean (and also the population variance and standard deviation)
is a parameter of a distribution. Means, variances, and standard deviations of finite
populations are almost identical to their sample analogs. You will learn more about
these terms and appreciate their meaning for infinite populations after we cover ab-
solutely continuous distributions and random variables in Chapter 5. We will refer
to the individual values in the data set as elements, a point that will be discussed in
more detail in Chapter 5, which covers probability theory.

Statisticians generally use the arithmetic mean as a measure of central tendency
for numbers that are from a ratio scale (e.g., many biological values, height, blood
sugar, cholesterol), from an interval scale (e.g., Fahrenheit temperature or personal-
ity measures such as depression), or from an ordinal scale (high, medium, low). The
values may be either discrete or continuous; for example, ranking on an attitude
scale (discrete values) or blood cholesterol measurements (continuous).

It is important to distinguish between a continuous scale such as blood choles-
terol and cholesterol measurements. While the scale is continuous, the measure-
ments we record are discrete values. For example, when we record a cholesterol
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measurement of 200, we have converted a continuous variable into a discrete mea-
surement. The speed of an automobile is also a continuous variable. As soon as we
state a specific speed, for example, 60 miles or 100 kilometers per hour, we have
created a discrete measurement. This example becomes clearer if we have a
speedometer that gives a digital readout such as 60 miles per hour.

For large data sets (e.g., more than about 20 observations when performing calcu-
lations by hand), summing the individual numbers may be impractical, so we use
grouped data. When using a computer, the number of values is not an issue at all. The
procedure for calculating a mean is somewhat more involved for grouped data than
for ungrouped data. First, the data need to be placed in a frequency table, as illustrat-
ed in Chapter 3. We then apply Formula 4.2, which specifies that the midpoint of
each class interval (X) is multiplied by the frequency of observation in that class.

The mean using grouped data is

X= 5 4.2)

where JX; is the midpoint of the ith interval and f; is the frequency of observations in
the ith interval.

In order to perform the calculation specified by Formula 4.2, first we need to
place the data from Table 4.2 in a frequency table, as shown in Table 4.3. For a re-
view of how to construct such a table, consult Chapter 3. From Table 4.3, we can
see that 3fX = 9715, 3f = n = 100, and that the mean is estimated as 97.2 (rounding
to the nearest tenth).

4.1.2 The Median

Previously in Chapter 3, we defined the term median and illustrated its calculation
for small data sets. In review, the median refers to the 50% point in a frequency dis-

TABLE 4.2. Plasma Glucose Values (mg/dl) for a Sample of 100 Adults,
Aged 20-74 Years

74 82 86 88 90 91 94 97 106 123
75 82 86 89 90 92 95 98 108 124
77 82 87 89 90 92 95 99 108 128
78 83 87 89 90 92 95 99 113 132
78 83 87 89 90 92 95 99 113 134
78 83 88 89 90 93 95 99 115 140
80 83 88 89 90 93 96 100 118 151
81 85 88 89 90 94 96 101 120 153
81 86 88 89 90 94 97 104 121 156

81 86 88 90 91 94 97 105 122 164
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TABLE 4.3. Calculation of a Mean from a Frequency Table
(Using Data from Table 4.2)

Class Midpoint
Interval (x) f fx
160-169 165.5 1 165.50
150-159 155.5 3 466.50
140-149 145.5 1 145.50
130-139 1345 2 269.00
120-129 124.5 6 747.00
110-119 114.5 4 458.00
100-109 104.5 7 731.50
90-99 94.5 37 3496.50
80-89 84.5 33 2788.50
70-79 74.5 6 447.00

100 9715.00

e ;ﬁX’ 9715.0 07.15
Zfi 100

tribution of a population. When data are grouped in a frequency table, the median is
an estimate because we are unable to calculate it precisely. Thus, Formula 4.3 is
used to estimate the median from data in a frequency table:

median = lower limit of the interval + i(0.50n — ¢f) 4.3)

where i = the width of the interval
n = sample size (or N = population size)
¢f = the cumulative frequency below the interval that contains the median

The sample median (an analog to the population median) is defined in the same
way as a population median. For a sample, 50% of the observations fall below and
50% fall above the median. For a population, 50% of the probability distribution is
above and 50% is below the median.

In Table 4.4, the lower end of the distribution begins with the class 70-79. The
column “cf” refers to the cumulative frequency of cases at and below a particular
interval. For example, the ¢f at interval 80—89 is 39. The ¢fis found by adding the
numbers in columns fand c¢f diagonally; e.g., 6 + 33 = 39. First, we must find the in-
terval in which the median is located. There are a total of 100 cases, so one-half of
them (0.50n) equals 50. By inspecting the cumulative frequency column, we find
the interval in which 50% of the cases (the 50th case) fall in or below: 90-99. The
lower real limit of the interval is 89.5.

Here is a point that requires discussion. Previously, we stated that the mea-
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TABLE 4.4. Determining a Median from a Frequency

Table
Class
Interval f cf
160-169 1 100
150-159 3 99
140-149 1 96
130-139 2 95
120-129 6 93
110-119 4 87
100-109 7 83
90-99 37 76
80-89 33 39
70-79 6 6

surements from a continuous scale represent discrete values. The numbers placed
in the frequency table were continuous numbers rounded off to the nearest unit.
The real limits of the class interval are halfway between adjacent intervals. As a
result, the real limits of a class interval, e.g., 90-99, are 89.5 to 99.5. The width
of the interval (i) is (99.5 — 89.5), or 10. Thus, placing these values in Formula 4.3
yields

median = 89.5 + 10[(0.50)(100) — 39] = 97.47

For data that have not been grouped, the sample median also can be calculated in
a reasonable amount of time on a computer. The computer orders the observations
from smallest to largest and finds the middle value for the median if the sample size
is odd. For an even number of observations, the sample does not have a middle val-
ue; by convention, the sample median is defined as the average of two values that
fall in the middle of a distribution. The first number in the average is the largest ob-
servation below the halfway point and the second is the smallest observation above
the halfway point.

Let us illustrate this definition of the median with small data sets. Although the
definition applies equally to a finite population, assume we have selected a small
sample. For n = 7, the data are {2.2, 1.7, 4.5, 6.2, 1.8, 5.5, 3.3}. Ordering the data
from smallest to largest, we obtain {1.7, 1.8, 2.2,3.3,4.5,5.5, 6.2}. The middle ob-
servation (median) is the fourth number in the sequence; three values fall below 3.3
and three values fall above 3.3. In this case, the median is 3.3.

Suppose n = 8 (the previous data set plus one more observation, 5.7). The new
data set becomes {1.7, 1.8,2.2,3.3,4.5,5.5,5.7, 6.2}. When = is even, we take the
average of the two middle numbers in the data set, e.g., 3.3 and 4.5. In our example,
the sample median is (3.3 + 4.5)/2 = 3.9. Note that there are three observations
above and three below the two middle observations.
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4.1.3 The Mode

The mode refers to the class (or midpoint of the class) that contains the highest fre-
quency of cases. In Table 4.4, the modal class is 90-99. When a distribution is por-
trayed graphically, the mode is the peak in the graph. Many distributions are multi-
modal, referring to the fact that they may have two or more peaks. Such multimodal
distributions are of interest to epidemiologists because they may indicate different
causal mechanisms for biological phenomena, for example, bimodal distributions in
the age of onset of diseases such as tuberculosis, Hodgkins disease, and meningo-
coccal disease. Figure 4.1 illustrates unimodal and bimodal distributions.

4.1.4 The Geometric Mean

The geometric mean (GM) is found by multiplying a set of values and then finding
their nth root. All of the values must be non-0 and greater than 1. Formula 4.4
shows how to calculate a GM.

n

GM=/XXX; - X,= VIL X, (4.4)

i=1

A GM is preferred to an arithmetic mean when several values in a data set are
much higher than all of the others. These higher values would tend to inflate or dis-
tort an arithmetic mean. For example, suppose we have the following numbers: 10,
15, 5, 8, 17. The arithmetic mean is 11. Now suppose we add one more number—
100—to the previous five numbers. Then the arithmetic mean is 25.8, an inflated
value not very close to 11. However, the geometric mean is 14.7, a value that is
closerto 11.

In practice, is it desirable to use a geometric mean? When greatly differing val-
ues within a data set occur, as in some biomedical applications, the geometric mean
becomes appropriate. To illustrate, a common use for the geometric mean is to de-
termine whether fecal coliform levels exceed a safe standard. (Fecal coliform bacte-
ria are used as an indicator of water pollution and unsafe swimming conditions at

(@) Unimodal Distribution (b) Bimodal Distribution

frequency
frequency

X variable X variable

Figure 4.1. Unimodal and bimodal distribution curves. (Source: Authors.)
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beaches.) For example, the standard may be set at a 30-day geometric mean of 200
fecal coliform units per 100 ml of water. When the water actually is tested, most of
the individual tests may fall below 200 units. However, on a few days some of the
values could be as high as 10,000 units. Consequently, the arithmetic mean would
be distorted by these extreme values. By using the geometric mean, one obtains an
average that is closer to the average of the lower values. To cite another example,
when the sample data do not conform to a normal distribution, the geometric mean
is especially useful. A log transformation of the data will produce a symmetric dis-
tribution that is normally distributed.

Review Formula 4.4 and note the nth root of the product of a set of numbers.
You may wonder how to find the nth root of a number. This problem is solved by
logarithms or, much more easily, by using the “geometric mean function” in a
spreadsheet program.

Here is a simple calculation example of the GM. Let X}, X5, Xj, ..., X, denote
our sample of n values. The geometric mean is the nth root of the product of these
values, or (X; X, X5 ... X ).

If we apply the log transformation to this geometric mean we obtain {log(X;) +
log(X>) + log(X3) +. . . + log(X,)}/n. From these calculations, we see that the GM is
the arithmetic mean of the data after transforming them to a log scale. On the log
scale, the data become symmetric. Consequently, the arithmetic mean is the natural
parameter to use for the location of the distribution, confirming our suspicion that
the geometric mean is the correct measure of central tendency on the original scale.

4.1.5 The Harmonic Mean

The harmonic mean (HM) is the final measure of location covered in this chapter.
Although the HM is not used commonly, we mention it here because you may en-
counter it in the biomedical literature. Refer to Iman (1983) for more information
about the HM, including applications and relationships with other measures of loca-
tion, as well as additional references.

The HM is the reciprocal of the arithmetic average of the reciprocals of the orig-
inal observations. Mathematically, we define the HM as follows: Let the original
observations be denoted by X}, X, X, . . ., X,. Consider the observations Y;, Y5, Y3,
..., Y, obtained by reciprocal transformation, namely ¥; = 1/X; fori=1,2,3,...,
n. Let Y, denote the arithmetic average of the Y’s, where

n

2%
=S

The harmonic mean (HM) of the X’s is 1/Y);:

HM = — (4.5)

where ¥, = 1/X, fori=1,2,3,...,nand ¥, = XY))/n.
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4.1.6 Which Measure Should You Use?

Each of the measures of central tendency has strengths and weaknesses. The mode
is difficult to use when a distribution has more than one mode, especially when
these modes have the same frequencies. In addition, the mode is influenced by the
choice of the number and size of intervals used to make a frequency distribution.

The median is useful in describing a distribution that has extreme values at either
end; common examples occur in distributions of income and selling prices of hous-
es. Because a few extreme values at the upper end will inflate the mean, the median
will give a better picture of central tendency.

Finally, the mean often is more useful for statistical inference than either the
mode or the median. For example, we will see that the mean is useful in calculating
an important measure of variability: variance. The mean is also the value that mini-
mizes the sum of squared deviations (mean squared error) between the mean and
the values in the data set, a point that will be discussed in later chapters (e.g., Chap-
ter 12) and that is exceedingly valuable for statistical inference.

The choice of a particular measure of central tendency depends on the shape of
the population distribution. When we are dealing with sample-based data, the distri-
bution of the data from the sample may suggest the shape of the population distrib-
ution. For normally distributed data, mathematical theory of the normal distribution
(to be discussed in Chapter 6) suggests that the arithmetic mean is the most appro-
priate measure of central tendency. Finally, as we have discussed previously, if a
log transformation creates normally distributed data, then the geometric mean is ap-
propriate to the raw data.

How are the mean, median, and mode interrelated? For symmetric distributions,
the mean and median are equal. If the distribution is symmetric and has only one
mode, all three measures are the same, an example being the normal distribution.
For skewed distributions, with a single mode, the three measures differ. (Refer to
Figure 4.2.) For positively skewed distributions (where the upper, or left, tail of the
distribution is longer (“fatter”) than the lower, or right, tail) the measures are or-

Symmetric Distribution Skewed Distribution
a
Mean : | :Mode
Median  Median
Mode Mean

Figure 4.2. Mean, median, and mode, symmetric and skewed distributions. (Source: Centers for Dis-
ease Control and Prevention (1992). Principles of Epidemiology, 2nd Edition, Figure 3.11, p. 187.)
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Frequency

X variable

Figure 4.3. Symmetric (B) and skewed distributions: right skewed (A) and left skewed (C). (Source:
Centers for Disease Control and Prevention (1992). Principles of Epidemiology, 2nd Edition, Figure 3.5,
p. 151.)

dered as follows: mode < median < mean. For negatively skewed distributions
(where the lower tail of the distribution is longer than the upper tail), the reverse or-
dering occurs: mean < median < mode. Figure 4.3 shows symmetric and skewed
distributions. The fact that the median is closer to the mean than is the mode led
Karl Pearson to observe that for moderately skewed distributions such as the gam-
ma distribution, mode — mean = 3(median — mean). See Stuart and Ord (1994) and
Kotz and Johnson (1985) for more details on these relationships.

4.2 MEASURES OF DISPERSION

As you may have observed already, when we select a sample and collect measure-
ments for one or more characteristics, these measurements tend to be different from
one another. To give a simple example, height measurements taken from a sample
of persons obviously will not be all identical. In fact, if we were to take measure-
ments from a single individual at different times during the day and compare them,
the measurements also would tend to be slightly different from one another; i.e., we
are shorter at the end of the day than when we wake up!

How do we account for differences in biological and human characteristics?
While driving through Midwestern cornfields when stationed in Michigan as a post-
doctoral fellow, one of the authors (Robert Friis) observed that fields of corn stalks
generally resemble a smooth green carpet, yet individual plants are taller or shorter
than others. Similarly, in Southern California where oranges are grown or in the al-
mond orchards of Tuscany, individual trees differ in height. To describe these dif-
ferences in height or other biological characteristics, statisticians use the term vari-
ability.

We may group the sources of variability according to three main categories: true
biological, temporal, and measurement. We will delimit our discussion of the first
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of the categories, variation in biological characteristics, to human beings. A range
of factors cause variations in human biological characteristics, including, but not
limited to, age, sex, race, genetic factors, diet and lifestyle, socioeconomic status,
and past medical history.

There are many good examples of how each of the foregoing factors produces
variability in human characteristics. However, let us focus on one—age, which is an
important control or demographic variable in many statistical analyses. Biological
characteristics tend to wax and wane with increasing age. For example, in the U.S.,
Europe, and other developed areas, systolic and diastolic blood pressures tend to in-
crease with age. At the same time, age may be associated with decline in other char-
acteristics such as immune status, bone density, and cardiac and pulmonary func-
tioning. All of these age-related changes produce differences in measurements of
characteristics of persons who differ in age. Another important example is the im-
pact of age or maturation effects on children’s performance on achievement tests
and intelligence tests. Maturation effects need to be taken into account with respect
to performance on these kinds of tests as children progress from lower to higher
levels of education.

Temporal variation refers to changes that are time-related. Factors that are capa-
ble of producing temporal variation include current emotional state, activity level,
climate and temperature, and circadian rhythm (the body’s internal clock). To illus-
trate, we are all aware of the phenomenon of jet lag—how we feel when our normal
sleep—awake rhythm is disrupted by a long flight to a distant time zone. As a conse-
quence of jet lag, not only may our level of consciousness be impacted, but also
physical parameters such as blood pressure and stress-related hormones may fluctu-
ate. When we are forced into a cramped seat during an extended intercontinental
flight, our circulatory system may produce life-threatening clots that lead to pul-
monary embolism. Consequently, temporal factors may cause slight or sometimes
major variations in hematologic status.

Finally, another example of a factor that induces variability in measurements is
measurement error. Discrepancies between the “true” value of a variable and its
measured value are called measurement errors. The topic of measurement error is
an important aspect of statistics. We will deal with this type of error when we cover
regression (Chapter 12) and analysis of variance (Chapter 13). Sources of measure-
ment error include observer error, differences in measuring instruments, technical
errors, variability in laboratory conditions, and even instability of chemical reagents
used in experiments. Take the example of blood pressure measurement: In a multi-
center clinical trial, should one or more centers use a faulty sphygmomanometer,
that center would contribute measures that over- or underestimate blood pressure.
Another source of error would be inaccurate measurements caused by medical per-
sonnel who have hearing loss and are unable to detect blood pressure sounds by lis-
tening with a stethoscope.

Several measures have been developed—measures of dispersion—to describe the
variability of measurements in a data set. For the purposes of this text, these measures
include the range, the mean absolute deviation, and the standard deviation.
Percentiles and quartiles are other measures, which we will discuss in Chapter 6.
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4.2.1 Range

The range is defined as the difference between the highest and lowest value in a dis-
tribution of numbers. In order to compute the range, we must first locate the highest
and lowest values. With a small number of values, one is able to inspect the set of
numbers in order to identify these values.

When the set of numbers is large, however, a simple way to locate these values is
to sort them in ascending order and then choose the first and last values, as we did
in Chapter 3. Here is an example: Let us denote the lowest or first value with the
symbol X; and the highest value with X,. Then the range (d) is

d=X,- X, (4.6)
with indices 1 and » defined after sorting the values.
Calculation is as follows:

Data set: 100, 95, 125, 45, 70
Sorted values: 45, 70, 95, 100, 125
Range = 125 - 45

Range = 80

4.2.2 Mean Absolute Deviation

A second method we use to describe variability is called the mean absolute devi-
ation. This measure involves first calculating the mean of a set of observations
or values and then determining the deviation of each observation from the mean
of those values. Then we take the absolute value of each deviation, sum all of
the deviations, and calculate their mean. The mean absolute deviation for a sam-
ple is

> -
mean absolute deviation = =-——— (4.7a)
n

where n = number of observations in the data set.

The analogous formula for a finite population is

N

> - ul

mean absolute deviation = ’:'T (4.7b)

where N = number of observations in the population.
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Here are some additional symbols and formulae. Let
d=X,-X

where:
X; = a particular observation, | =i =n

X = sample mean
d; = the deviation of a value from the mean

The individual deviations (d;) have the mathematical property such that when we
sum them

Thus, in order to calculate the mean absolute deviation of a sample, the formula
must use the absolute value of d; (|d}|), as shown in Formula 4.7.

Suppose we have the following data set {80, 70, 95, 100, 125}. Table 4.5
demonstrates how to calculate a mean absolute deviation for the data set.

4.2.3 Population Variance and Standard Deviation

Historically, because of computational difficulties, the mean absolute deviation was
not used very often. However, modern computers can speed up calculations of the
mean absolute deviation, which has applications in statistical methods called robust
procedures. Common measures of dispersion, used more frequently because of their
desirable mathematical properties, are the interrelated measures variance and stan-

TABLE 4.5. Calculation of a Mean Absolute
Deviation (Blood Sugar Values for a Small Finite

Population)

X X —
80 14
70 24
95 1

100 6

125 31

3470 76
5

N=5 DX ul =76
i=1

w=470/5=94
Mean absolute deviation = 76/5 = 15.2
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dard deviation. Instead of using the absolute value of the deviations about the mean,
both the variance and standard deviation use squared deviations about the mean, de-
fined for the ith observation as (X; — w)?. Formula 4.8, which is called the deviation
score method, calculates the population variance (¢2) for a finite population. For in-
finite populations we cannot calculate the population parameters such as the mean
and variance. These parameters of the population distribution must be approximat-
ed through sample estimates. Based on random samples we will draw inferences
about the possible values for these parameters.

Z

X; — wy?
o2 = =l
N

(4.8)

where N = the total number of elements in the population.

A related term is the population standard deviation (o), which is the square root
of the variance:

(4.9)

Table 4.6 gives an example of the calculation of ¢ for a small finite population.
The data are the same as those in Table 4.5 (u = 94).

What do the variance and standard deviation tell us? They are useful for compar-
ing data sets that are measured in the same units. For example, a data set that has a
“large” variance in comparison to one that has a “small” variance is more variable
than the latter one.

TABLE 4.6. Calculation of Population Variance

Suppose we have a small finite population (N = 5)
with the following blood sugar values:

X; Xi—p (X; — w)?
70 24 196
80 ~14 576
95 1 1
100 6 36
125 31 961
s 0 1,770

[

X — wy? 1770
2= p :T:3540':\/0‘2:18.8
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Returning to the data set in the example (Table 4.6), the variance o2 is 354. If the
numbers differed more from one another, e.g., if the lowest value were 60 and the
highest value 180, with the other three values also differing more from one another
than in the original data set, then the variance would increase substantially. We will
provide several specific examples.

In the first and second examples, we will double (Table 4.6a) and triple (Table
4.6b) the individual values; we will do so for the sake of argument, forgetting mo-
mentarily that some of the blood sugar values will become unreliable. In the third

TABLE 4.6a. Effect on Mean and Variance of Doubling Each
Value of a Variable

X Xi—u X — wy?
140 48 2,304
160 28 784
190 2 4
200 12 144
250 62 3,844
p) 0 7,080

=188 o®=1416 o=376

TABLE 4.6b. Effect on Mean and Variance of Tripling Each
Value of a Variable

X Xi—u (X — wy?
210 o)) 5,184
240 —42 1,764
285 3 9
300 18 324
375 93 8,649
p) 0 15,930

=282 0% =3,186 o=56.4

TABLE 4.6¢c. Effect on Mean and Variance of Adding a
Constant (25) to Each Value of a Variable

X; Xi— (X; — w)?
95 24 576
105 _14 196
120 1 1
125 6 36
150 31 961
s 0 1,770

pn=119 o® =354 o=18.8
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example, we will add a constant, 25, to each individual value. The results are pre-
sented in Table 4.6c.

What may we conclude from the foregoing three examples? The individual val-
ues (X;) differ more from one another in Table 4.6a and Table 4.6b than they did in
Table 4.6. We would expect the variance to increase in the second two data sets be-
cause the numbers are more different from one another than they were in Table 4.6;
in fact, o2 increases as the numbers become more different from one another. Note
also the following additional observations. When we multiplied the original X; by a
constant (e.g., 2 or 3), the variance increased by the constant squared (e.g., 4 or 9);
however, the mean was multiplied by the constant (2 - X; — 2u, 40%; 3 - X; — 3u,
90%). When we added a constant (e.g., 25) to each X;, there was no effect on the
variance, although w increased by the amount of the constant (25 + X; — u +25; o
= 02). These relationships can be summarized as follows:

Effect of multiplying X; by a constant @ or adding a constant to .X; for each i:

1. Adding a: the mean u becomes u + a; the variance o2 and standard deviation
o remain unchanged.

2. Multiplying by a: the mean w becomes ua, the variance o becomes o%a?,
and the standard deviation o becomes oa.

The standard deviation also gives us information about the shape of the distribu-
tion of the numbers. We will return to this point later, but for now distributions that
have “smaller” standard deviations are narrower than those that have “larger” stan-
dard deviations. Thus, in the previous example, the second hypothetical data set also
would have a larger standard deviation (obviously because the standard deviation is
the square root of the variance and the variance is larger) than the original data set.
Figure 4.4 illustrates distributions that have different means (i.e., different locations)
but the same variances and standard deviations. In Figure 4.5, the distributions have
the same mean (i.e., same locations) but different variances and standard deviations.

4.2.4 Sample Variance and Standard Deviation

Calculation of sample variance requires a slight alteration in the formula used for
population variance. The symbols S? and S shall be used to denote sample variance
and standard deviation, respectively, and are calculated by using Formulas 4.10a
and 4.10b (deviation score method).

> (X - Xy
i=1

== (4.10a)

(4.10b)

where 7 is the sample size and X is the sample mean.
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Frequency

X Variable

Figure 4.4. Symmetric distributions with the same variances and different means. (Source: Centers for
Disease Control and Prevention (1992). Principles of Epidemiology, 2nd Edition, Figure 3.4, p. 150.)

Note that n — 1 is used in the denominator. The sample variance will be used to
estimate the population variance. However, when # is used as the denominator for
the estimate of variance, let us denote this estimate as S, - E(S2) # o2, i.e., the ex-
pected value of the estimate S2, is biased; it does not equal the population variance.
In order to correct for this bias, n—1 must be used in the denominator of the formula

for sample variance. An example is shown in Table 4.7.
Before the age of computers, finding the difference between each score and the

Frequency

x Variable

Figure 4.5. Distributions with the same mean and different variances. (Source: Centers for Disease
Control and Prevention (1992). Principles of Epidemiology, 2nd Edition, Figure 3.4, p. 150.)
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TABLE 4.7. Blood Cholesterol Measurements for a Sample of 10 Persons

Person X X-X (X—X)? X,

1 276 16.3 265.69 76,176

2 304 443 1,962.49 92,416

3 316 56.3 3,169.69 99,856

4 188 -71.7 5,140.89 35,344

5 214 —45.7 2,088.49 45,796

6 252 77 59.29 63,504

7 333 73.3 5,372.89 110,889

8 271 11.3 127.69 73,441

9 245 -14.7 216.09 60,025

10 198 —61.7 3,806.89 39,204

Sum 2,597 0 22,210.10 696,651

Mean = X = 3X/n = 2,597/10 = 259.7

Variance 2467.788
Std. Dev. 49.677

mean was a cumbersome process. Statisticians developed a shortcut formula for the
sample variance that is computationally faster and numerically more stable than the
difference score formula. With the speed and high precision of modern computers,
the shortcut formula is no longer as important as it once was. But it is still handy for
doing computations on a pocket calculator.

This alternative calculation formula of sample variance (Formula 4.11) is alge-
braically equivalent to the deviation score method. The formula speeds the compu-
tation by avoiding the need to find the difference between the mean and each indi-
vidual value:

=E___ (4.11)

where X = sample mean and # is the sample size.

Using the data from Table 4.7, we see that:

_ 696651 —(10)(67444.09)
9

S§'="V2467.789 =49.677

s?

=2467.789

4.2.5 Calculating the Variance and Standard Deviation from Grouped Data

For larger samples (e.g., above n = 30), the use of individual scores in manual cal-
culations becomes tedious. An alternative procedure groups the data and estimates
s2 from the grouped data. The formulas for sample variance and standard deviation
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for grouped data using the deviation score method (shown in Formulas 4.12a and b)
are analogous to those for individual scores.

> AX-X)
Variance: $2= — 1 (4.12a)
n—
> fX-X)7
Standard deviation: S= — 1 (4.12b)
n—

Table 4.8 provides an example of the calculations. In Table 4.8, Xis the grouped
mean [3/X/3f= 19188.50/373 =~ 51.44 (by rounding to two decimal places)].

43 COEFFICIENT OF VARIATION (CV) AND COEFFICIENT OF
DISPERSION (CD)

Useful and meaningful only for variables that take on positive values, the coeffi-
cient of variation is defined as the ratio of the standard deviation to the absolute val-
ue of the mean. The coefficient of variation is well defined for any variable (includ-
ing a variable that can be negative) that has a nonzero mean.

Let 6 and V symbolize the coefficient of variation in the population and sample,
respectively. Refer to Formulas 4.13a and 4.13b for calculating 6 and V.

Population: 0(%) = 100(5) (4.13a)
“

S
Sample: V(%) = 100<)=() (4.13b)

TABLE 4.8. Ages of Patients Diagnosed with Multiple Sclerosis: Sample Variance and
Standard Deviation Calculations Using the Formulae for Grouped Data

Class Midpoint

Interval X f FX X-X (X—X)? AX - X)?
20-29 24.5 4 98.00 ~26.94 725.96 2,903.85
30-39 34.5 44 1,518.00 ~16.94 287.09  12,631.91
40-49 445 124 5,518.00 —6.94 48.22 5,978.66
50-59 54.5 124 6,758.00 3.06 9.34 1,158.28
6069 64.5 48 3,096.00 13.06 170.47 8,182.41
70-79 74.5 25 1,862.50 23.06 53159 13,289.82
80-89 84.5 4 338.00 33.06 1,092.72 4,370.88

P — 373 19,188.50 — — 48,515.82
4851582 .
373-1 '

§=V13042=11.42
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Usually represented as a percentage, sometimes 6 is thought of as a measure of
relative dispersion. A variable with a population standard deviation of ¢ and a mean
w1 > 0 has a coefficient of variation 6 = 100(a7/u)%.

Given a data set with a sample mean X > 0 and standard deviation S, the sample
coefficient of variation is ¥ = 100(S/X)%. The term V is the obvious sample analog
to the population coefficient of variation.

The original purpose of the coefficient of variation was to make comparisons be-
tween different distributions. For instance, if we want to see whether the distribu-
tion of the length of the tails of mice is similar to the distribution of the length of
elephants’ tails, we could not meaningfully compare their actual standard devia-
tions. In comparison to the standard deviation of the tails of mice, the standard devi-
ation of elephants’ tails would be larger simply because of the much larger mea-
surement scale being used. However, these very differently sized animals might
very well have similar coefficients of variation with respect to their tail lengths.

Another estimator, V*, the coefficient of variation biased adjusted estimate, is
often used for the sample estimate of the coefficient of variation because it has less
bias in estimating 6. V* = V{1 + (1/[4n])}, where n is the sample size. So V'* in-
creases V by a factor of 1/(4n) or adds V/(4n) to the estimate of V. Formula 4.14

shows the formula for V*:
1
VE=V1+ ™ (4.14)

This estimate and further discussion of the coefficient of variation can be found in
Sokal and Rohlf (1981), pp. 58—-60.

Formulas 4.15a and 4.15b present the formula for the coefficient of dispersion
(CD):

Sample: CD = (4.152)

Population: CD= (4.15b)

Similar to ¥, CD is the ratio of the variance to the mean. If we think of V" as a ratio
rather than a percentage, we see that CD is just XJ2. The coefficient of dispersion is
related to the Poisson distribution, which we will explain later in the text. Often, the
Poisson distribution is a good model for representing the number of events (e.g., traf-
fic accidents in Los Angeles) that occur in a given time interval. The Poisson distrib-
ution, which can take on the value zero or any positive value, has the property that its
mean is always equal to its variance. So a Poisson random variable has a coefficient
of dispersion equal to 1. The CD is the sample estimate of the coefficient of disper-
sion. Often, we are interested in count data. You will see many applications of count
data when we come to the analysis of survival times in Chapter 15.

We may want to know whether the Poisson distribution is a reasonable model for
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our data. One way to ascertain the fit of the data to the Poisson distribution is to ex-
amine the CD. If we have sufficient data, the CD will provide a good estimate of the
population coefficient of dispersion. If the Poisson model is reasonable, the estimat-
ed CD should be close to 1. If the CD is much less than 1, then the counting process
is said to be underdispersed (meaning that the CD has less variance relative to the
mean than a Poisson counting process). On the other hand, a counting process with
a value of CD that is much greater than 1 indicates overdispersion (the opposite of
underdispersion).

Overdispersion occurs commonly as a counting process that provides a mixture
of two or more different Poisson counting processes. These so-called compound
Poisson processes occur frequently in nature and also in some manmade events. A
hypothetical example relates to the time intervals between motor vehicle accidents
in a specific community during a particular year. The data for the time intervals be-
tween motor vehicle accidents might fit well to a Poisson process. However, the
data aggregate information for all ages, e.g., young people (18-25 years of age),
mature adults (2565 years of age), and the elderly (above 65 years of age). The
motor vehicle accident rate is likely to be higher for the inexperienced young peo-
ple than for the mature adults. Also, the elderly, because of slower reflexes and
poorer vision, are likely to have a higher accident rate than the mature adults. The
motor vehicle accident data for the combined population of drivers represents an
accumulation of three different Poisson processes (corresponding to three different
age groups) and, hence, an overdispersed process.

A key assumption of linear models is that the variance of the response variable ¥
remains constant as predictor variables change. Miller (1986) points out that a prob-
lem with using linear models is that the variance of a response variable often does
not remain constant but changes as a function of a predictor variable.

One remedy for response variables that have changing variance when predictor
variables change is to use variance-stabilizing transformations. Such transforma-
tions produce a variable that has variance that does not change as the mean changes.
The mean of the response variable will change in experiments in which the predic-
tor variables are allowed to change; the mean of the response changes because it is
affected by these predictors. You will appreciate these notions more fully when we
cover correlation and simple linear regression in Chapter 12.

Miller (1986), p. 59, using what is known as the delta method, shows that a log
transformation stabilizes the variance when the coefficient of variation for the re-
sponse remains constant as its mean changes. Similarly, he shows that a square root
transformation stabilizes the variance if the coefficient of dispersion for the re-
sponse remains constant as the mean changes. Miller’s book is advanced and re-
quires some familiarity with calculus.

Transformations can be used as tools to achieve statistical assumptions needed
for certain types of parametric analyses. The delta method is an approximation tech-
nique based on terms in a Taylor series (polynomial approximations to functions).
Although understanding a Taylor series requires a first year calculus course, it is
sufficient to know that the coefficient of dispersion and the coefficient of variation
have statistical properties that make them useful in some analyses.
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Because Poisson variables have a constant coefficient of dispersion of 1, the
square root transformation will stabilize the variance for them. This fact can be very
useful for some practical applications.

4.4 EXERCISES

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

What is meant by a measure of location? State in your own words the defini-
tions of the following measures of location:

Arithmetic mean

Median

Mode

Uni-, bi-, and multimodal distributions

Skewed distributions—positively and negatively

Geometric mean

Harmonic mean

oo TR

How are the mean, median, and mode interrelated? What considerations lead
to the choice of one of these measures of location over another?

Why do statisticians need measures of variability? State in your own words
the definitions of the following measures of variability:

a. Range

b. Mean absolute deviation

c. Standard deviation

How are the mean and variance of a distribution affected when:
a. A constant is added to every value of a variable?
b. Every value of a variable is multiplied by a constant?

Giving appropriate examples, explain what is meant by the following state-
ment: “S? is a biased or unbiased estimator of the parameter ¢2.”

Distinguish among the following formulas for variance:

. Finite population variance

b. Sample variance (deviation score method)

c. Sample variance (deviation score method for grouped data)
d. Sample variance (calculation formula)

o

Define the following terms and indicate their applications:
a. Coefficient of variation
b. Coefficient of dispersion

The table below frequency table showing heights in inches of a sample of fe-
male clinic patients. Complete the empty cells in the table and calculate the
sample variance by using the formula for grouped data.
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Class  Midpoint

Interval X f X X X X-X (X-X? fX-Xp
45-49 2

50-54

55-59 74

60—64 212

65-69 91

70-74 18

Total 400

[Source: Author (Friis).]

4.9

4.10

4.11

4.12

4.13

4.14

Find the medians of the following data sets: {8, 7, 3, 5, 3}; {7, 8, 3, 6, 10, 10}.

Here is a dataset for mortality due to work-related injuries among African
American women in the United States during 1997: {15-24 years (9); 25-34
years (12); 35-44 years (15); 45-54 years (7); 55—64 years (5)}.

Identify the modal class.

b. Calculate the estimated median.

c. Assume that the data are for a finite population and compute the variance.
d. Assume the data are for a sample and compute the variance.

®

A sample of data was selected from a population: {195, 179, 205, 213, 179,

216, 185, 211}.

a. Use the deviation score method and the calculation formula to calculate
variance and standard deviations.

b. How do the results for the two methods compare with one another? How
would you account for discrepancies between the results obtained?

Using the data from the previous exercise, repeat the calculations by applying
the deviation score method; however, assume that the data are for a finite
population.

Assume you have the following datasets for a sample: {3, 3, 3, 3, 3}; {5,7,9,
11}; {4, 7, 8}; {33, 49}

a. Compute S and S2.

b. Describe the results you obtained.

Here again are the seasonal home run totals for the four baseball home run
sluggers we compared in Chapter 3:

McGwire 49,32, 33, 39,22,42,9,9, 39, 52, 58, 70, 65, 32

Sosa 4, 15, 10, 8, 33, 25, 36, 40, 36, 66, 63, 50

Bonds 16, 25, 24, 19, 33, 25, 34, 46, 37, 33, 42, 40, 37, 34, 49
Griffey 16, 22, 22,27, 45, 40, 17, 49, 56, 56, 48, 40
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4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

SUMMARY STATISTICS

a. Calculate the sample average number of home runs per season for each
player.

b. Calculate the sample median of the home runs per season for each player.

c. Calculate the sample geometric mean for each player.

d. Calculate the sample harmonic mean for each player.

Again using the data for the four home run sluggers in Exercise 4.14, calcu-
late the following measures of dispersion:

a. Each player’s sample range

b. Each player’s sample standard deviation

c. Each player’s mean absolute deviation

For each baseball player in Exercise 4.14, calculate their sample coefficient
of variation.

For each baseball player in Exercise 4.14, calculate their sample coefficient
of dispersion.

Did any of the results in Exercise 4.17 come close to 1.0? If one of the play-
ers did have a coefficient of dispersion close to 1, what would that suggest
about the distribution of his home run counts over the interval of a baseball
season?

The following cholesterol levels of 10 people were measured in mg/dl: {260,
150, 165, 201, 212, 243, 219, 227, 210, 240}. For this sample:

a. Calculate the mean and median.

b. Calculate the variance and standard deviation.

c. Calculate the coefficient of variation and the coefficient of dispersion.

For the data in Exercise 4.19, add the value 931 and recalculate all the sample
values above.

Which statistics varied the most from Exercise 4.19 to Exercise 4.20? Which
statistics varied the least?

The eleventh observation of 931 is so different from all the others in Exercise
4.19 that it seems suspicious. Such extreme values are called outliers. Which
estimate of location do you trust more when this observation is included, the
mean or the median?

Answer the following questions:

a. Can a population have a zero variance?

b. Can a population have a negative variance?
c. Can a sample have a zero variance?

d. Can a sample have a negative variance?
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4.5 ADDITIONAL READING

The following references provide additional information on the mean, median, and
mode, and the coefficient of variation, the coefficient of dispersion, and the har-
monic mean.

1. Centers for Disease Control and Prevention (1992). Principles of Epidemiology, 2nd Edi-
tion. USDHHS, Atlanta, Georgia.

2. Iman, R. “Harmonic Mean.” In Kotz, S. and Johnson, N. L. (editors). (1983). Encyclope-
dia of Statistical Sciences, Volume 3, pp. 575-576. Wiley, New York.

3. Kotz, S. and Johnson, N. L. (editors). (1985). Encyclopedia of Statistical Sciences, Vol-
ume 5, pp. 364-367. Wiley, New York.

4. Kruskal, W. H. and Tanur, J. M. (editors). (1978). International Encyclopedia of Statis-
tics, Volume 2, 1217. Free Press, New York.

5. Miller, R. G. (1986). Beyond ANOVA, Basics of Applied Statistics. Wiley, New York.

6. Stuart, A. and Ord, K. (1994). Kendall’s Advanced Theory of Statistics, Volume 1, Sixth
Edition, pp. 108-109. Edward Arnold, London.

7. Sokal, R. R. and Rohlf, F. J. (1981). Biometry, 2nd Edition. W. H. Freeman, New York.



CHAPTER 5

Basic Probability

As for a future life, every man must judge for himself between con-
flicting vague probabilities.
—Charles Darwin, The Life and Letters of Charles Darwin: Religion, p. 277

5.1 WHAT IS PROBABILITY?

Probability is a mathematical construction that determines the likelihood of occur-
rence of events that are subject to chance. When we say an event is subject to
chance, we mean that the outcome is in doubt and there are at least two possible
outcomes.

Probability has its origins in gambling. Games of chance provide good examples
of what the possible events are. For example, we may want to know the chance of
throwing a sum of 11 with two dice, or the probability that a ball will land on red in
a roulette wheel, or the chance that the Yankees will win today’s baseball game, or
the chance of drawing a full house in a game of poker.

In the context of health science, we could be interested in the probability that a
sick patient who receives a new medical treatment will survive for five or more
years. Knowing the probability of these outcomes helps us make decisions, for ex-
ample, whether or not the sick patient should undergo the treatment.

We take some probabilities for granted. Most people think that the probability
that a pregnant woman will have a boy rather than a girl is 0.50. Possibly, we think
this because the world’s population seems to be very close to 50-50. In fact, vital
statistics show that the probability of giving birth to a boy is 0.514.

Perhaps this is nature’s way to maintain balance, since girls tend to live longer
than boys. So although 51.4% of newborns are boys, the percentage of 50-year-old
males may be in fact less than 50% of the set of 50-year-old people. Therefore,
when one looks at the average sex distribution over all ages, the ratio actually may
be close to 50% even though over 51% of the children starting out in the world are
boys.

Another illustration of probability lies in the fact that many events in life are un-
certain. We do not know whether it will rain tomorrow or when the next earthquake

92 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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will hit. Probability is a formal way to measure the chance of these uncertain
events. Based on mathematical axioms and theorems, probability also involves a
mathematical model to describe the mechanism that produces uncertain or random
outcomes.

To each event, our probability model will assign a number between 0 and 1. The
value 0 corresponds to events that cannot happen and the value 1 to events that are
certain.

A probability value between 0 and 1, e.g., 0.6, assigned to an event has a fre-
quency interpretation. When we assign a probability, usually we are dealing with a
one-time occurrence. A probability often refers to events that may occur in the fu-
ture.

Think of the occurrence of an event as the outcome of an experiment. Assume
that we could replicate this experiment as often as we want. Then, if we claim a
probability of 0.6 for the event, we mean that after conducting this experiment
many times we would observe that the fraction of the times that the event occurred
would be close to 60% of the outcomes. Consequently, in approximately 40% of the
experiments the event would not occur. These frequency notions of probability are
important, as they will come up again when we apply them to statistical inference.

The probability of an event 4 is determined by first defining the set of all possi-
ble elementary events, associating a probability with each elementary event, and
then summing the probabilities of all the elementary events that imply the occur-
rence of 4. The elementary events are distinct and are called mutually exclusive.

The term “mutually exclusive” means that for elementary events A, and 4,, if 4,
happens then A4, cannot happen and vice versa. This property is necessary to sum
probabilities, as we will see later. Suppose we have event 4 such that if 4, occurs,
A, cannot occur, or if 4, occurs, 4, cannot occur (i.e., 4, and 4, are mutually exclu-
sive elementary events) and both 4, and 4, imply the occurrence of A. The proba-
bility of 4 occurring, denoted P(4), satisfies the equation P(4) = P(4,) + P(4,).

We can make this equation even simpler if all the elementary events have the
same chance of occurring. In that case, we say that the events are equally likely. If
there are k& distinct elementary events and they are equally likely, then each elemen-
tary event has a probability of 1/k. Suppose we denote the number of favorable out-
comes as m, which is comprised of m elementary events. Suppose also that any
event 4 will occur when any of these m favorable elementary events occur and m <
k. The foregoing statement means that there are & equally likely, distinct, elemen-
tary events and that m of them are favorable events.

Thus, the probability that 4 will occur is defined as the sum of the probabilities
that any one of the m elementary events associated with 4 will occur. This probabil-
ity is just m/k. Since m represents the distinct ways that 4 can occur and & represents
the total possible outcomes, a common description of probability in this simple
model is

P(4) = m__ {number of favorable outcomes }
k {number of possible outcomes}
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Example 1: Tossing a Coin Twice. Assume we have a fair coin (one that favors
neither heads nor tails) and denote H for heads and T for tails. The assumption of
fairness implies that on each trial the probability of heads is P(H) = 1/2 and the
probability of tails is P(7) = 1/2. In addition, we assume that the trials are statisti-
cally independent—meaning that the outcome of one trial does not depend on the
outcome of any other trial. Shortly, we will give a mathematical definition of statis-
tical independence, but for now just think of it as indicating that the trials do not in-
fluence each other.

Our coin toss experiment has four equally likely elementary outcomes. These out-
comes are denoted as ordered pairs, which are {H, H}, {H, T}, {T, H}, and {7, T}.
For example, the pair {H, T} denotes a head on the first trial and a tail on the second.
Because of the independence assumption, all four elementary events have a proba-
bility of 1/4. You will learn how to calculate these probabilities in the next section.

Suppose we want to know the probability of the event 4 = {one head and one
tail}. A occurs if {H, T} or {T, H} occurs. So P(4)=1/4 + 1/4 = 1/2.

Now, take the event B = {at least one head occurs}. B can occur if any of the el-
ementary events {H, H}, {H, T} or {T, H} occurs. So P(B) =1/4+ 1/4 + 1/4 = 3/4.

Example 2: Role Two Dice one Time. We assume that the two dice are indepen-
dent of one another. Sum the two faces; we are interested in the faces that add up to
either 7, 11, or 2. Determine the probability of rolling a sum of either 7, 11, or 2.

For each die there are 6 faces numbered with 1 to 6 dots. Each face is assumed to
have an equal 1/6 chance of landing up. In this case, there are 36 equally likely ele-
mentary outcomes for a pair of dice. These elementary outcomes are denoted by
pairs, such as {3, 5}, which denotes a roll of 3 on one die and 5 on the other. The 36
elementary outcomes are

(L 15 {125, {1, 33, {1, 45, {1, 5}, {1, 6}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5},
(2,6}, {3, 1}, {3,2},{3,3}, {3, 4}, {3, 5}, {3, 6}, {4, 1}, {4, 2}, {4, 3}, {4, 4},
4,5}, {4, 6}, {5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {6, 1}, {6, 2}, {6, 3},
{6,4}, {6, 5}, and {6, 6}.

Let A denote a sum of 7, Ba sum of 11, and C a sum of 2. All we have to do is iden-
tify and count all the elementary outcomes that lead to 7, 11, and 2. Dividing each
sum by 36 then gives us the answers:

Seven occurs if we have {1, 6}, {2, 5}, {3, 4}, {4, 3}, {5,2}, or {6, 1}. That is,
the probability of 7 is 6/36 = 1/6 = 0.167. Eleven occurs only if we have {5, 6}
or {6, 5}. So the probability of 11 is 2/36 = 1/18 = 0.056. For 2 (also called
snake eyes), we must roll {1, 1}. So a 2 occurs only with probability 1/36 =
0.028.

The next three sections will provide the formal rules for these probability calcu-
lations in general situations.
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5.2 ELEMENTARY SETS AS EVENTS AND THEIR COMPLEMENTS

The elementary events are the building blocks (or atoms) of a probability model.
They are the events that cannot be decomposed further into smaller sets of events.
The set of elementary events is just the collection of all the elementary events. In
example 2, the event {1, 1} “snake eyes” is an elementary event. The set [{1, 1},
{1, 23, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6],
(3,13, 3,2}, {3, 3}, (3,4}, (3,5}, {3, 6}, {4, 1}, {4, 2}, (4,3}, {4, 4}, {4, 5},
(4,6}, {5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5. 6}, {6, 1}, {6,2}, {6, 3}, {6, 4},
{6, 5}, and {6, 6}] is the set of elementary events.

It is customary to use (), the Greek letter omega, to represent the set containing
all the elementary events. This set is also called the universal set. For {) we have
P(Q)) = 1. The set containing no events is denoted by J and is called the null set, or
empty set. For the empty set & we have P(J) = 0.

For any set A4, A€ denotes the complement of A. The complement of set 4 is just
the set of all elementary events not contained in 4. From Example 2, if 4 = {sum of
the faces on the two dice is seven}, then 4 = [{1, 6}, {2, 5}, {3, 4}, {4, 3}, {5, 2},
{6, 1}] and the set 4 is the set [{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 1}, {2, 2},
{2,3}, {2, 4}, {2, 6}, {3, 1}, {3, 2}, {3, 3}, {3, 5}, {3, 6}, {4, 1}, {4, 2}, {4, 4},
{4, 5}, {4, 6}, {5, 1}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {6, 2}, {6, 3}, {6, 4}, {6, 5},
and {6, 6}] .

By simply counting the elementary events in the set and dividing by the total
number of elementary events in (), we obtain the probability for the event. In prob-
lems with a large number of elementary events, this method for finding a probabili-
ty can be tedious; it also requires that the elementary events are equally likely. For-
mulas that we derive in later sections will allow us to compute more easily the
probabilities of certain events.

Consider the probability of 4 = {sum of the faces on the two dice is seven}. As
we saw in the previous section, P(4) = 6/36 = 1/6 = 0.167. Since there are 30 ele-
mentary events in 4¢, P(4¢) = 30/36 = 5/6 = 0.833. We see that P(4°) = 1 — P(A),
which is always the case, as demonstrated in the next section.

5.3 INDEPENDENT AND DISJOINT EVENTS

Now we will give some formal definitions of independent events and disjoint
events. But first we must explain the symbols for intersection and union of events.

Definition 5.3.1: Intersection. Let E and F be two events; then £ N F denotes the
event G that is the intersection of £ and F. G is the collection of elementary events
that are contained in both E and F.

We often say that G occurs only if both £ and F occur. Let us define the union of
two events.
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Definition 5.3.2: Union. Let A and B be two events; then 4 U B denotes the event
C that is the union of 4 and B. C is the collection of elementary events that are con-
tained in both 4 and B or in either 4 or B.

In Example 2 (roll two dice independently), let E = {observe the same face on each
die} and let F = {the first face is even}. Then E = [{1, 1}, {2, 2}, {3, 3}, {4, 4},
{5,5},and {6, 6}]. F=[{2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {4, 1}, {4, 2},
{4,3},{4,4}, {4, 5}, {4, 6}, {6, 1}, {6,2}, {6,3}, {6,4}, {6,5}, and {6, 6}]. Take
G =E N F. Because G consists of the common elementary events, G =[{2, 2}, {4, 4}
and {6, 6}].

We see here that P(F) = 6/36 = 1/6, P(F) = 18/36 = 1/2, and P(G) = 3/36 = 1/12.
When we intersect three or more events, for example, the events D, E, and F, we
simply denote that intersection by K =D M E N F. This set is the same as taking the
set H=D N E and then taking K = H N F, or taking G = E N F and then finding K
=DNAG.

An additional point: The order in which the successive intersections is taken and
the order in which the sets are arranged do not matter.

Definition 5.3.3: Mutual Independence. Let A, A,, . . ., A; be a set of k events (k
is an integer greater than or equal to 2). Then these events are said to be mutually
independent if P(4; N A, N ..., A;) = P(4,)P(4,) ... P(4,), and this equality of
probability of intersection to product of individual probabilities must hold for any
subset of these & events.

Definition 5.3.3 tells us that a set of events are mutually independent if, and only
if, the probability of the intersection of any pair, or any set of three up to the set of
all k events, is equal to the product of their individual probabilities. We will see
shortly how this definition relates to our commonsense notion that independence
means that one event does not affect the outcome of the others.

In Example 2, £ and F are independent of each other. Remember that £ =
{observe the same face on each die} and F = {the first face is even}. We see from
the commonsense notion that whether or not the first face is even has no effect on
whether or not the second face will have the same number as the first.

We verify mutual independence from the formal definition by computing P(G)
and comparing P(G) to P(E) P(F). We saw earlier that P(G) = 1/12, P(E) = 1/6, and
P(F) =1/2. Thus, P(E) P(F) = (1/6) (1/2) = 1/12. So we have verified that £ and F
are independent by checking the definition.

Now we will define mutually exclusive events.

Definition 5.3.4: Mutually Exclusive Events. Let A and B be two events. We say
that 4 and B are mutually exclusive if 4 N B = J, or equivalently in terms of prob-
abilites, if P(4 N B) = 0. In particular, we note that 4 and 4¢ are mutually exclusive
events.
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Figure 5.1. Intersection.

The distinction between the concepts of independent events and mutually exclu-
sive events often leads to confusion. The two concepts are not related except that
they both are defined in terms of probabilities of intersections.

Let us consider two nonempty events, 4 and B. Suppose 4 and B are indepen-
dent. Now, P(4) > 0 and P(B) > 0, so P(4 N B) = P(4) P(B) > 0. Therefore, because
P(4A N B) # 0, A and B are not mutually exclusive.

Now consider two mutually exclusive events, C and D, which are also nonemp-
ty. So P(C) > 0 and P(D) > 0, but P(C N D) = 0 because C and D are mutually ex-
clusive. Then, since P(C)P(D) > 0, P(C N D) # P(C)P(D); therefore, C and D are
not independent.

Thus, we see that for two nonempty events, if the events are mutually exclusive,
they cannot be independent. On the other hand, if they are independent, they cannot
be mutually exclusive. Thus, these two concepts are in opposition.

Venn diagrams are graphics designed to portray combinations of sets such as
those that represent unions and intersections. Figure 5.1 provides a Venn diagram
for the intersection of events 4 and B.

Circles in the Venn diagram represent the individual events. In Figure 5.1, two
circles, which represent events 4 and B, are labeled 4 and B. A third event, the in-
tersection of the two events 4 and B, is indicated by the shaded area. Similarly, Fig-
ure 5.2 provides a Venn diagram that illustrates the union of the same two events.

Figure 5.2. Union.
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This illustration is accomplished by shading the regions covered by both of the indi-
vidual sets in addition to the areas in which they overlap.

5.4 PROBABILITY RULES

Product (Multiplication) Rule for Independent Events

If 4 and B are independent events, their joint probability of occurrence is given by
the Formula 5.1:

P(4 N B)=P(A4) x P(B) (5.1)

For a clear application of this rule, consider the experiment in which we roll two
dice. What is the probability of a 1 on the first roll and a 2 or 4 on the second roll?

First of all, the outcome on the first roll is independent of the outcome on the
second roll; therefore, define 4 = {get a 1 on one die and any outcome on the sec-
ond die}, and let B = {any outcome on one die and a 2 or a 4 on the second die}. We
can describe 4 as the following set of elementary events: 4 =[{1, 1}, {1, 2}, {1, 3},
{1,4}, {1,5}, {1,6}]and B=[{1, 2}, {1, 4}, {2,2}, {2,4}, {3, 2}, {3, 4}, {4, 2},
{4, 4}, {5,2}, {5, 4}, {6,2}, {6,4}].

The event C =4 N B =[{1, 2}, {1, 4}]. By the law of multiplication for inde-
pendent events, P(C) = P(4) x P(B) = (1/6) x (1/3) = 1/18. You can check this by
considering the elementary events associated with C. Since there are two events,
each with probability 1/36, P(C) =2/36 = 1/18.

Addition Rule for Mutually Exclusive Events

If A and B are mutually exclusive events, then the probability of their union (i.e., the
probability that at least one of the events, 4 or B, occurs) is given by Formula 5.2.
Mutually exclusive events are also called disjoint events. In terms of symbols, event
A and event B are disjoint if 4 N B= (.

P(4 U B)= P(4) + P(B) (5.2)

Again, consider the example of rolling the dice; we roll two dice once. Let 4 be the
event that both dice show the same number, which is even, and let B be the event that
both dice show the same number, which is odd. Let C =4 U B. Then C is the event
in which the roll of the dice produces the same number, either even or odd.

For the two dice together, C occurs in six elementary ways: {1, 1}, {2, 2}, {3, 3},
{4,4},{5,5},and {6, 6}. A occurs in three elementary ways, namely, {2, 2}, {4, 4},
and {6, 6}. B also occurs in three elementary ways, namely, {1, 1}, {3,3}, and {5, 5}.

P(C) = 6/36 = 1/6, whereas P(4) = 3/36 = 1/12 and P(B) = 3/36 = 1/12. By the
addition law for mutually exclusive events, P(C) = P(4) + P(B) = (1/12) + (1/12) =
2/12 = 1/6. Thus, we see that the addition rule applies.
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An application of the rule of addition is the rule for complements, shown in For-
mula 5.3. Since 4 and A¢ are mutually exclusive and complementary, we have ) =
AU A¢and P(Q2) = P(A U A°) = P(A) + P(4°) = 1.

P(4°) = 1 - P(A) (5.3)

In general, the addition rule can be modified for events 4 and B that are not dis-
joint. Let 4 and B be the sets identified in the Venn diagram in Figure 5.3. Call the
overlap area C =4 N B. Then, we can divide the set 4 U B into three mutually ex-
clusive sets as labeled in the diagram, namely, 4 N B¢, C, and B N A°.

When we compute P(4) + P(B), we obtain P(4) = P(A N B) + P(4 N B°) and
PB)=P(BNA)+PBNA).NowANB=BNA.SoP)+PB)=PANB)+
P(A N BY)+PBNA+PBNA)=PA N B)+ PB N A)+2P(C). But P(4 U
B)=P(4 N B)+ P(B N A°) + P(C) because it is the union of these three mutually
exclusive events.

The problem with the summation formula is that P(C) is counted twice. We rem-
edy this error by subtracting P(C) once. This subtraction yields the generalized ad-
dition formula for union of arbitrary events, shown as Formula 5.4:

P(4 U B)=P(4) + P(B)— P(4 N B) (5.3)

Note that Formula 5.4 applies to mutually exclusive events 4 and B as well,
since for mutually exclusive events, P(4 N B) = 0. Next we will generalize the mul-
tiplication rule, but first we need to define conditional probabilities.

Suppose we have two events, 4 and B, and we want to define the probability of 4
occurring given that B will occur. We call this outcome the conditional probability
of 4 given B and denote it by P(4|B). Definition 5.4.1 presents the formal mathe-
matical definition of P(4|B).

Definition 5.4.1: Conditonal Probability of A Given B. Let A and B be arbitrary
events. Then P(4|B) = P(4 N B)/P(B).

C=4ANB

Figure 5.3. Decomposition of 4 U B into disjoint sets.
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Consider rolling one die. Let A = {a 2 occurs} and let B = {an even number oc-
curs}. Then 4 = {2} and B =[{2}, {4}, {6}]. P(A N B)=1/6 because A N B=A4 =
{2} and there is 1 chance out of 6 for 2 to come up. P(B) = 1/2 since there are 3 ways
out of 6 for an even number to occur. So by definition, P(4|B) = P(A N B)/P(B) =
(1/6)/(1/2) =2/6 = 1/3.

Another way to understand conditional probabilities is to consider the restricted
outcomes given that B occurs. If we know that B occurs, then the outcomes {2},
{4}, and {6} are the only possible ones and they are equally likely to occur. So each
outcome has the probability 1/3; hence, the probability of a 2 is 1/3. That is just
what we mean by P(4|B). Directly from Definition 5.4.1, we derive Formula 5.5 for
the general law of conditional probabilities:

P(4|B) = P(4 N B)/P(B) (5.5)

Multiplying both sides of the equation by P(B), we have P(4|B) P(B) = P(A N B).
This equation, shown as Formula 5.6, is the generalized multiplication law for the in-
tersection of arbitrary events:

P(4 N B) = P(A|B)P(B) (5.6)

The generalized multiplication formula holds for arbitrary events 4 and B. Conse-
quently, it also holds for independent events.

Suppose now that 4 and B are independent; then, from Formula 5.1, P(4 N B) =
P(A) P(B). On the other hand, from Formula 5.6, P(4 N B) = P(4|B) P(B). So
P(A|B) P(B) = P(4) P(B).

Dividing both sides of P(4|B) P(B) = P(4) P(B) by P(B) (since P(B) > 0), we
have P(A4|B) = P(A). That is, if A and B are independent, then the probability of 4
given B is the same as the unconditional probability of 4.

This result agrees with our intuitive notion of independence, namely, condition-
ing on B does affect the chances of 4’s occurrence. Similarly, one can show that if
A and B are independent, then P(B|4) = P(B).

5.5 PERMUTATIONS AND COMBINATIONS

In this section, we will derive some results from combinatorial mathematics. These
results will be useful in obtaining shortcut calculations of probabilities of events
linked to specific probability distributions to be discussed in Sections 5.6 and 5.7.

In the previous sections, we presented a common method for calculating proba-
bilities: We calculated the probability of an event by counting the number of possi-
ble ways that the event can occur and dividing the resulting number by the total
number of equally likely elementary outcomes. Because we used simple examples,
with 36 possibilities at most, we had no difficulty applying this formula.

However, in many applied situations the number of ways that an event can occur
is so large that complete enumeration is tedious or impractical. The combinatorial
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methods discussed in this section will facilitate the computation of the numerator
and denominator for the probability of interest.

Let us again consider the experiment where we toss dice. On any roll of a die,
there are six elementary outcomes. Suppose we roll the die three times so that each
roll is independent of the other rolls. We want to know how many ways we can roll
a4 or less on all three rolls of the die without repeating a number.

We could do direct enumeration, but there are a total of 6 x 6 X 6 =216 possible
outcomes. In addition, the number of successful outcomes may not be obvious. There
is a shortcut solution that becomes even more important as the space of possible out-
comes, and possible successful outcomes, becomes even larger than in this example.

Thus far, our problem is not well defined. First we must specify whether or not
the order of the distinct numbers matters. When order matters we are dealing with
permutations. When order does not matter we are dealing with combinations.

Let us consider first the case in which order is important; therefore, we will be
determining the number of permutations. If order matters, then the triple {4, 3,2} is
a successful outcome but differs from the triple {4, 2, 3} because order matters. In
fact, the triples {4, 3, 2}, {4, 2, 3}, {3, 4, 2}, {3, 2,4}, {2, 4, 3}, and {2, 3, 4} are
six distinct outcomes when order matters but count only as one outcome when order
does not matter, because they all correspond to an outcome in which the three num-
bers 2, 3, and 4 each occur once.

Suppose the numbers 4 or lower comprise a successful outcome. In this case we
have four objects—the numbers 1, 2, 3, and 4—to choose from because a choice of
5 or 6 on any trial leads to a failed outcome. Since there are only three rolls of the
die, and a successful roll requires a different number on each trial, we are interested
in the number of ways of selecting three objects out of four when order matters.
This type of selection is called the number of possible permutations for selecting
three objects out of four.

Let us think of the problem of selecting the objects as filling slots. We will count
the number of ways we can fill the first slot and then, given that the first slot is
filled, we consider how many ways are left to fill the second slot. Finally, given that
we have filled the first two slots, we consider how many ways remain to fill the
third slot. We then multiply these three numbers together to get the number of per-
mutations of three objects taken out of a set of four objects.

Why do we multiply these numbers together? This procedure is based on a sim-
ple rule of counting. To illustrate, let us consider a slightly different case that in-
volves two trials. We want to observe an even number on the first trial (call that
event A) and an even number on the second trial. However, the number on the sec-
ond trial must differ from the one chosen on the first (call that event B).

On the first trial, we could get a 2, 4, or 6. So there are three possible ways for 4
to occur. On the second trial, we also can get a 2, 4, or 6, but we can’t repeat the re-
sult of the first trial. So if 2 occurred for 4, then 4 and 6 are the only possible out-
comes for B. Similarly, if 4 occurred for 4, then 2 and 6 are the only possible out-
comes for B.

Finally, if the third possible outcome for 4 occurred, namely 6, then only 2 and 4
are possible outcomes for B. Note that regardless of what number occurs for 4,
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there are always two ways for B to occur. Since 4 does not depend on B, there are
always three ways for 4 to occur.

According to the multiplication rule, the number of ways 4 and B can occur to-
gether is the product of the individual number of ways that they can occur. In this
example, 3 X 2 = 6 ways. Let us enumerate these pairs to see that 6 is in fact the
right number.

We have {2, 4}, {2, 6}, {4, 2}, {4, 6}, {6, 2}, and {6, 4}. This set consists of the
number of permutations of two objects taken out of three, as we have two slots to
fill with three distinct even numbers: 2, 4, and 6.

Now let us go back to our original, more complicated, problem of selecting three
(since we are filling three slots) from four objects: 1, 2, 3, and 4. By using mathe-
matical induction, we can show that the multiplication law extends to any number
of slots. Let us accept this assertion as a fact. We see that our solution to the prob-
lem involves taking the number of permutations for selecting three objects out of
four; the multiplication rule tells us that this solution is 4 x 3 x 2 = 24,

The following list enumerates these 24 cases: {4, 3, 2}, {4, 3, 1}, {4, 2, 3},
{4,2,1}, {4, 1,3}, {4, 1, 2}, {3, 4, 2}, {3, 4, 1}, {3, 2, 4}, {3, 1, 4}, {2, 4, 3},
{2,4,1}, {2, 3,4}, {2, 1,4}, {1, 4, 3}, {1, 4,2}, {1, 3,4}, {1, 2,4}, {3, 2, 1}
{3,1,2},{2,3,1}, {2, 1,3}, {1, 3,2}, and {1, 2, 3}. Note that a systematic method
of enumeration is important; otherwise, it is easy to miss some cases or to acciden-
tally count cases twice.

Our system is to start with the highest available number in the first slot; once the
first slot is chosen, we select the next highest available number for the second slot,
and then the remaining highest available number for the third slot. This process is
repeated until all cases with 4 in the first slot are exhausted. Then we consider the
cases with 3 in the first slot, the highest available remaining number for the second
slot, and then the highest available remaining number for the third slot. After the 3s
are exhausted, we repeat the procedure with 2 in the first slot, and finally with 1 in
the first slot.

In general, let » be the number of objects to choose and # the number of objects
available. We then denote by P(n, r) the number of permutations of r objects chosen
out of n. As an example of permutations, we denote the quantity 3 x 2=3 x2 x | as
3!, where the symbol “!” represents the function called the factorial. In our notation
and formulae, 0! exists and is equal to 1. Formula 5.7 shows the permutations of
objects taken from 7 objects:

P(n,r)y=nl/(n—r)! (5.7)

From Formula 5.7, we see that when n =3 and r =2, P(3, 2) =3!/(3 -2)! =3!/1!
= 3! = 6. This result agrees with our enumeration of distinct even numbers on two
rolls of the die. Also, P(4, 3) = 4!/(4 — 3)! = 4!/1! = 4] = 24. This number agrees
with the result we obtained for three independent rolls less than 5.

Now we will examine combinations. For combinations, we consider only dis-
tinct subsets but not their order. In the example of distinct outcomes of three rolls of
the die where success means three distinct numbers less than 5 without regard to or-
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der, the triplets {2, 3, 4}, {2, 4,3}, {3, 2,4}, {3,4,2}, {4, 3,2}, and {4, 2, 3} differ
only in order and not in the objects included.

Notice that for each different set of three distinct numbers, the common number
of permutations is always 6. For example, the set 1, 2, and 3 contains the six triplets
{1,2,3},{1,3,2},{2,1,3}, {2,3,1}, {3, 1, 2}, and {3, 2, 1}. Notice that the num-
ber six occurs because it is equal to P(3, 3) =3!/0! = 3! =6.

Because for every distinct combination of r objects selected out of » there are
P(r, r) orders for these objects, we have P(n, r) = C(n, r)P(r, r) where C(n, r) de-
notes the number of combinations for choosing r objects out of n. Therefore, we ar-
rive at the following equation for combinations, with the far-right-hand side of the
chain of equalities obtained by substitution, since P(r, r) = r! C(n, r) = P(n, r)/
P(r, r) =n!/[(n —r)! P(r, r)] = nV/[(n — r)! r!]. Formula 5.8 shows the formula for
combinations of » objects taken out of :

Cn,ry=n!/[(n—r)r (5.8)

In our example of three rolls of the die leading to three distinct numbers less than
5, we obtain the number of combinations for choosing 3 objects out of 4 as C(4, 3)
=4!/[1! 3] = 4. These four distinct combinations are enumerated as follows: (1) 1,
2and 3;(2) 1,2 and 4; (3) 1, 3 and 4; and (4) 2, 3 and 4.

5.6 PROBABILITY DISTRIBUTIONS

Probability distributions describe the probability of events. Parameters are charac-
teristics of probability distributions. The statistics that we have used to estimate pa-
rameters are also called random variables. We are interested in the distributions of
these statistics and will use them to make inferences about population parameters.

We will be able to draw inferences by constructing confidence intervals or test-
ing hypotheses about the parameters. The methods for doing this will be developed
in Chapters 8 and 9, but first you must learn the basic probability distributions and
the underlying bases for the ones we will use later.

We denote the statistic, or random variable, with a capital letter—often “X.” We
distinguish the random variable X from the value it takes on in a particular experi-
ment by using a lower case x for the latter value. Let 4 = [X = x]. Assume that 4 =
[X = x] is an event that is similar to the events described earlier in this chapter. If X
is a discrete variable that takes on only a finite set of values, the events of the form
A = [X = x] have positive probabilities associated with some finite set of values for
x and zero probability for all other values of x.

A discrete variable is one that can take on distinct values for each individual
measurement. We can assign a positive probability to each number. The probabili-
ties associated with each value of a discrete variable can form an infinite set of val-
ues, known as an infinite discrete set. The discrete set also could be finite. The most
common example of an infinite discrete set is a Poisson random variable, which as-
signs a positive probability to all the non-negative integers, including zero. The
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Poisson distribution is a type of distribution used to portray events that are infre-
quent (such as the number of light bulb failures). The degree of occurrence of
events is determined by the rate parameter. By infrequent we mean that in a short
interval of time there cannot be two events occurring. An example of a distribution
that is discrete and finite is the binomial distribution, to be discussed in detail later.
For the binomial distribution, the random variable is the number of successes in #
trials; it can take on the n + 1 discrete values 0, 1, 2,3, ..., n.

Frequently, we will deal with another type of random variable, the absolutely
continuous random variable. This variable can take on values over a continuous
range of numbers. The range could be an interval such as [0, 1], or it could be the
entire set of real numbers. A random variable with a uniform distribution illustrates
a distribution that uses a range of numbers in an interval such as [0, 1]. A uniform
distribution is made from a dataset in which all of the values have the same chance
of occurrence. The normal, or Gaussian, distribution is an example of an absolutely
continuous distribution that takes on values over the entire set of real numbers.

Absolutely continuous random variables have probability densities associated
with them. You will see that these densities are the analogs to probability mass
functions that we will define for discrete random variables.

For absolutely continuous random variables, we will see that events such as 4 =
P(X = x) are meaningless because for any value x, P(X = x) = 0. To obtain mean-
ingful probabilities for absolutely continuous random variables, we will need to talk
about the probability that X falls into an interval of values such as P(0 <X < 1). On
such intervals, we can compute positive probabilities for these random variables.

Probability distributions have certain characteristics that can apply to both ab-
solutely continuous and discrete distributions. One such property is symmetry. A
probability distribution is symmetric if it has a central point at which we can con-
struct a vertical line so that the shape of the distribution to the right of the line is the
mirror image of the shape to the left.

We will encounter a number of continuous and discrete distributions that are
symmetric. Examples of absolutely continuous distributions that are symmetric are
the normal distribution, Student’s ¢ distribution, the Cauchy distribution, the uni-
form distribution, and the particular beta distribution that we discuss at the end of
this chapter.

The binomial distribution previously mentioned (covered in detail in the next
section) is a discrete distribution. The binomial distribution is symmetric if, and
only if, the success probability p = 1/2. To review, the toss of a fair coin has two
possible outcomes, heads or tails. If we want to obtain a head when we toss a coin,
the head is called a “success.” The probability of a head is 1/2.

Probability distributions that are not symmetric are called skewed distributions.
There are two kinds of skewed distributions: positively skewed and negatively
skewed. Positively skewed distributions have a higher concentration of probability
mass or density to the left and a long, declining tail to the right, whereas negatively
skewed distributions have probability mass or density concentrated to the right with
a long, declining tail to the left.

Figure 5.4 shows continuous probability densities corresponding to: (1) a sym-
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Figure 5.4. Continuous probability densities.

metric normal distribution, (2) a symmetric bimodal distribution, (3) a negatively
skewed distribution, and (4) a positively skewed distribution. The negative expo-
nential distribution and the chi-square distribution are examples of positively
skewed distributions.

Beta distributions and binomial distributions (both to be described in detail later)
can be symmetric, positively skewed, or negatively skewed depending on the val-
ues of certain parameters. For instance, the binomial distribution is positively
skewed if p < 1/2, is symmetric if p = 1/2, and is negatively skewed if p > 1/2.

Now let us look at a familiar experiment and define a discrete random variable
associated with that experiment. Then, using what we already know about probabil-
ity, we will be able to construct the probability distribution for this random variable.

For the experiment, suppose that we are tossing a fair coin three times in indepen-
dent trials. We can enumerate the elementary outcomes: a total of eight. With H de-
noting heads and 7 tails, the triplets are: {H, H, H}, {H,H, T}, {H, T,H}, {H, T, T},
{T,H,H},{T,H,T},{T,T,H},and {T, T, T}. We can classify these eight elementary
events as follows: E, ={H,H,H},E,={H,H, T}, Es={H,T,H}, E,={H, T, T}, Es
={T,H,H},E;={T,H, T}, E,={T, T,H},and Es= {T, T, T}.

We want Z to denote the random variable that counts the number of heads in the
experiment. By looking at the outcomes above, you can see that Z can take on the
values 0, 1, 2, and 3. You also know that the 8 elementary outcomes above are
equally likely because the coin is fair and the trials are independent. So each triplet
has a probability of 1/8. You have learned that elementary events are mutually ex-
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clusive (also called disjoint). Consequently, the probability of the union of elemen-
tary events is just the sum of their individual probabilities.

You are now ready to compute the probability distribution for Z. Since Z can be
only 0, 1, 2, or 3, we know its distribution once we compute P(Z = 0), P(Z = 1),
P(Z=2),and P(Z=3). Each of these events {Z=0}, {Z=1}, {Z=2}, and {Z =3}
can be described as the union of a certain set of these elementary events.

For example, Z = 0 only if all three tosses are tails. £ denotes the elementary
event {7, T, T}. We see that P(Z=0) = P(Eg) = 1/8. Similarly, Z= 3 only if all three
tosses are heads. £, denotes the event {H, H, H}; therefore, P(Z=3)= P(E;) = 1/8.

Consider the event Z = 1. For Z= 1, we have exactly one head and two tails. The
elementary events that lead to this outcome are £, = {H, T, T}, Es = {T, H, T}, and
E,={T, T,H}. So P(Z=1)=P(E, U Es U E;). By the addition law for mutually
exclusive events, we have P(Z=1) = P(E, U Es U E;) = P(E,) + P(Es) + P(E;) =
1/8+1/8 +1/8 =3/8.

Next, consider the event Z= 2. For Z =2 we have exactly one tail and two heads.
Again there are three elementary events that give this outcome. They are E, =
{H,H, T}, E;=1{H, T, H}, and Es = {T, H, H}. So P(Z=2) = P(E, U E; U Ej).
By the addition law for mutually exclusive events, we have P(Z=2)=P(E, U E; U
Es)=P(E,)+ P(E;) + P(Es)=1/8+1/8 + 1/8 = 3/8.

Table 5.1 gives the distribution for Z. The second column of the table is called
the probability mass function for Z. The third column is the cumulative probability
function. The value shown in the first cell of the third column is carried over from
the first cell of the second column. The value shown in the second cell of the third
column is the sum of the values shown in cell one and in all of the cells above cell
two of the second column. Each of the remaining values shown in the third column
can be found in a similar manner, e.g., the third cell in column 3 (0.875) = (0.125 +
0.375 + 0.375). We will find analogs for the absolutely continuous distribution
functions.

Recall another way to perform the calculation. In the previous section, we
learned how to use permutations and combinations as a shortcut to calculating such
probabilities. Let us see if we can determine the distribution of Z using combina-
tions.

To obtain Z = 0, we need three tails for three objects. There are C(3, 3) ways to
do this. C(3,3) =31/[(3-3)! 3!]=31/[0! 3!]]=1.So P(Z=0) = C(3, 3)/8 =1/8 =
0.125.

TABLE 5.1. Probability Distribution for Number of Heads in
Three Coin Tosses

Value for Z P(Z=Value) P(Z = Value)
0 1/8=0.125 1/8 =0.125
1 3/8=0.375 4/8 =0.500
2 3/8=0.375 7/8 =0.875
3 1/8=0.125 8/8 =1.000
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To find Z = 1, we need two tails and one head. Order does not matter, so the
number of ways of choosing exactly two tails out of three is C(3, 2) = 3!/[(3 — 2)!
217=3[11211=3x%x2/2=3.S0 P(Z=1)=C(3, 2)/8 =3/8 =0.375.

Now for Z =2, we need one tail and two heads. Thus, we must select exactly one
tail out of three choices; order does not matter. So P(Z=2) = C(3, 1)/8 and C(3, 1)
=3Y[(3 - D! 11]=3Y[2! 1!] =3 x 2/2 = 3. Therefore, P(Z=2)=C(3, 1)/8 =3/8 =
0.375.

For P(Z = 3), we must have no tails out of three selections. Again, order does not
matter, so P(Z=3)=C(3, 0)/8 and C(3, 0) = 3!/[(3-0)! 0!T=3!/[31 0!]=3!/3! =1.
Therefore, P(Z=3) = C(3, 0)/8 = 1/8 = 0.125.

Once one becomes familiar with this method for computing permutations, it is
simpler than having to enumerate all of the elementary outcomes. The saving in
time and effort becomes much more apparent as the space of possible outcomes in-
creases markedly. Consider how tedious it would be to compute the distribution of
the number of heads when we toss a coin 10 times!

The distribution we have just seen is a special case of the binomial distribution
that we will discuss in Section 5.7. We will denote the binomial distribution as Bi(n,
p)- The two parameters » and p determine the distribution. We will see that # is the
number of trials and p is the probability of success on any one trial. The binomial
random variable is just the count of the number of successes.

In our example above, if we call a head on a trial a success and a tail a failure,
then we see that because we have a fair coin, p = 1/2 = 0.50. Since we did three in-
dependent tosses of the coin, n = 3. Therefore, our exercise derived the distribution
Bi(3, 0.50).

In previous chapters we talked about means and variances as parameters that
measure location and scale for population variables. We saw how to estimate means
and variances from sample data. Also, we can define and compute these population
parameters for random variables if we can specify the distribution of these vari-
ables.

Consider a discrete random variable such as the binomial, which has a positive
probability associated with a finite set of discrete values x;, x,, X3, . . . , x,,. To each
value we associate the probability mass p, fori=1,2, 3, ..., n. The mean u for this
random variable is defined as w = 3, px;. The variance o2 is defined as ¢® =
S, pix; — w)?. For the Bi(n, p) distribution it is easy to verify that u = np and o =
npq, where ¢ = 1 — p. For an example, refer to Exercise 5.21 at the end of this chap-
ter.

Up to this point, we have discussed only discrete distributions. Now we want to
consider random variables that have absolutely continuous distributions. The sim-
plest example of an absolutely continuous distribution is the uniform distribution on
the interval [0, 1]. The uniform distribution represents the distribution we would
like to have for random number generation. It is the distribution that gives every
real number in the interval [0, 1] an “equal” chance of being selected, in the sense
that any subinterval of length L has the same probability of selection as any other
subinterval of length L.

Let U be a uniform random variable on [0, 1]; then P{0 = U = x) = x for any x
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satisfying 0 = x = 1. With this definition and using calculus, we see that the func-
tion F(x) = P{0 = U = x) = x is differentiable on [0, 1]. We denote its derivative by
f(x). In this case, f{x) =1 for 0 = x = 1, and f{x) = 0 otherwise.

Knowing that f{x) = 1 for 0 = x = 1, and f{x) = 0 otherwise, we find that for any
aand b satisfying 0 = a = b = 1, P(a = U = b) = b — a. So the probability that U
falls in any particular interval is just the length of the interval and does not depend
ona. Forexample, P0=U=0.2)=P0.1=U=03)=P03=U=05)=P>04
=U=06)=P0.7=U=09)=P08=U=1.0)=0.2.

Many other absolutely continuous distributions occur naturally. Later in the text,
we will discuss the normal distribution and the negative exponential distribution,
both of which are important absolutely continuous distributions.

The material described in the next few paragraphs uses results from elementary
calculus. You are not expected to know calculus. However, if you read this material
and just accept the results from calculus as facts, you will get a better appreciation
for continuous distributions than you would if you skip this section.

It is easy to define absolutely continuous distributions. All you need to do is de-
fine a continuous function, g, on an interval or on the entire line such that g has a fi-
nite integral.

Suppose the value of the integral is c¢. One then obtains a density function f{x)
by defining f{x) = g(x)/c. Then, integrating f over the region where g is not zero
gives the value 1. The integral of f we will call F, which when integrated from the
smallest value with a nonzero density to a specified point x is the cumulative dis-
tribution function. It has the property that it starts out at zero at the first real val-
ue for which /> 0 and increases to 1 as we approach the largest value of x for
which > 0.

Let us consider a special case of a family of continuous distributions on [0, 1]
called the beta family. The beta family depends on two parameters « and 8. We will
look at a special case where a = 2 and B = 2. In general, the beta density is f{x) =
B(a, B)x*! (1 —x)# 1. The term B(e, B) is a constant that is chosen so that the inte-
gral of the function g from 0 to 1 is equal to 1. This function is known as the beta
function. In the special case we simply define g(x) =x(1 —x) for 0 = x = | and g(x)
= 0 for all other values of x. Call the integral of g, G.

By integral calculus, G(x) = x*/2 —x3/3 forall 0 = x = 1, G(x) = 0 for x > 0, and
G(x) = 1/6 for all x > 1. Now G(1) = 1/6 is the integral of g over the interval [0, 1].
Therefore, G(1) is the constant ¢ that we want.

Let f{x) = g(x)/c = x(1 —x)/(1/6) = 6x(1 —x) for 0 = x = 1 and f{x) = 0 for all oth-
er x. The quantity 1/G(1) is the constant for the beta density f. In our general formu-
la it was B(«a, B). In this case, since & =2 and 8 =2 we have B(2, 2) = 1/G(1) = 6.
This function f'is a probability density function (the analog for absolutely continu-
ous random variables to the probability mass function for discrete random vari-
ables). The cumulative probability distribution function is F(x) = x*(3 — 2x) = 6G(x)
forO0 =x=1, F(x) =0 for x <0, and F(x) = 1 for x > 1. We see that F(x) = 6G(x)
for all x.

We can define, by analogy to the definitions for discrete random variables, the
mean w and the variance o2 for a continuous random variable. We simply use the
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integration symbol in place of the summation sign, with the density function f tak-
ing the place of the probability mass function. Therefore, for an absolutely continu-
ous random variable X, we have w = [xf(x)dx and 0@ = [(x — w)*f(x)dx.

For the uniform distribution on [0, 1], you can verify that u = 1/2 and ¢ = 1/12
if you know some basic integral calculus.

5.7 THE BINOMIAL DISTRIBUTION

As introduced in the previous section, the binomial random variable is the count of
the number of successes in n independent trials when the probability of success on
any given trial is p. The binomial distribution applies in situations where there are
only two possible outcomes, denoted as S for success and F for failure.

Each such trial is called a Bernoulli trial. For convenience, we let X; be a
Bernoulli random variable for trial i. Such a random variable is assigned the value 1
if the trial is a success and the value 0 if the trial is a failure.

For Z (the number of successes in # trials) to be Bi(n, p), we must have » inde-
pendent Bernoulli trials with each trial having the same probability of success p. Z
then can be represented as the sum of the » independent Bernoulli random variables
X, fori=1,2,3,...,n. This representation is convenient and conceptually impor-
tant when we are considering the Central Limit Theorem (discussed in Chapter 7)
and the normal distribution approximation to the binomial.

The binomial distribution arises naturally in many problems. It may represent
appropriately the distribution of the number of boys in families of size 3, 4, or 5, for
example, or the number of heads when a coin is flipped » times. It could represent
the number of successful ablation procedures in a clinical trial. It might represent
the number of wins that your favorite baseball team achieves this season or the
number of hits your favorite batter gets in his first 100 at bats.

Now we will derive the general binomial distribution, Bi(n, p). We simply gener-
alize the combinatorial arguments we used in the previous section for Bi(3, 0.50).
We consider P(Z = r) where 0 = » = n. The number of elementary events that lead
to r successes out of n trials (i.e., getting exactly » successes and » — r failures) is
Cn,ry=nl/[(n-n'r.

Recall our earlier example of filling slots. Applying that example to the present
situation, we note that one such outcome that leads to r successes and n — r failures
would be to have the r successes in the first  slots and the n — r failures in the re-
maining n — r slots. For each slot, the probability of a success is p, and the probabil-
ity of a failure is 1 — p. Given that the events are independent from trial to trial, the
multiplication rule for independent events applies, i.e., products of terms which are
either p or 1 — p. We see that for this particular arrangement, p is multiplied r times
and 1 — p is multiplied n — r times.

The probability for a success on each of the first 7 trials and a failure on each of
the remaining trials is p"(1 — p)"". The same argument could be made for any other
arrangement. The quantity p will appear » times in the product and 1 — p will appear
n — r times. The product of multiplication does not change when the order of the
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TABLE 5.2. Binomial Distributions for » = 8 and p ranging from 0.05 to 0.95

No. of
successes p=0.05 p=0.10 p=0.20 p=040 p=0.50 p=0.60 p=0.80 p=0.90 p=0.95

(=]

0.66342 0.43047 0.16777 0.01680 0.00391 0.00066 0.00000 0.00000 0.00000
0.27933 0.38264 0.33554 0.08958 0.03125 0.00785 0.00008 0.00000 0.00000
0.05146 0.14880 0.29360 0.20902 0.10938 0.04129 0.00115 0.00002 0.00000
0.00542 0.03307 0.14680 0.27869 0.21875 0.12386 0.00918 0.00041 0.00002
0.00036 0.00459 0.04588 0.23224 0.27344 0.23224 0.04588 0.00459 0.00036
0.00002 0.00041 0.00918 0.12386 0.21875 0.27869 0.14680 0.03307 0.00542
0.00000 0.00002 0.00115 0.04129 0.10938 0.20902 0.29360 0.14880 0.05146
0.00000 0.00000 0.00008 0.00785 0.03125 0.08958 0.33554 0.38264 0.27933
0.00000 0.00000 0.00000 0.00066 0.00391 0.01680 0.16777 0.43047 0.66342
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terms is changed. Therefore, each arrangement of the » successes and n — r failures
has the same probability of occurrence as the one that we just computed.

The number of such arrangements is just the number of ways to select exactly
r out of the 7 slots for success. This number denotes combinations for selecting »
objects out of n, namely, C(n, r). Therefore, P(Z = r) = C(n, r)(1 — p)"" =
{nV/[r!(n — r)!1}p"(1 — p)*". Because the formula for P(Z = r) applies for any val-
ue of 7 between 0 and » (including both 0 and »), we have the general binomial
distribution.

Table 5.2 shows for n = 8 how the binomial distribution changes as p ranges from
small values such as 0.05 to large values such as 0.95. From the table, we can see the
relationship between the probability distribution for Bi(#n, p) and the one for Bi(n, 1 —
p). We will derive this relationship algebraically using the formula for P(Z =r).

Suppose Z has the distribution Bi(n, p); then P(Z=r) = n!/[(n —r)!r!]p"(1 — p)*.
Now suppose W has the distribution Bi(n, 1 — p). Let us consider P(W = n — r).
PW=n-ry=nl/[{n—m-r)}(n-r)(1 -p)y"p =n/r (n-r'-py'p.
Without changing the product, we can switch terms around in the numerator and
switch terms around in the denominator: P(W=n—r)=n!/[r! (n—r)!](1 —=p)" " p" =
n!/[(n—r)! r!Ip"(1 — p)*". But we recognize that the term on the far-right-hand side
of the chain of equalities equals P(Z=r). So P(W = n —r) = P(Z=r). Consequently,
for 0 = r = n, the probability that a Bi(n, p) random variable equals 7 is the same as
the probability that a Bi(n, 1 — p) random variable is equal to n — .

Earlier in this chapter, we noted that Bi(n, p) has a mean of u = np and a variance
of 0® = npq, where g = 1 — p. Now that you know the probability mass function for
the Bi(n, p), you should be able to verify these results in Exercise 5.21.

5.8 THE MONTY HALL PROBLEM

Although probability theory may seem simple and very intuitive, it can be very sub-
tle and deceptive. Many results found in the field of probability are counterintuitive;
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some examples are the St. Petersburg Paradox, Benford’s Law of Lead Digits, the
Birthday Problem, Simpson’s Paradox, and the Monty Hall Problem.

References for further reading on the foregoing problems include Feller (1971),
which provides a good treatment of Benford’s Law, the Waiting Time Paradox, and
the Birthday Problem. We also recommend the delightful account (Bruce, 2000),
written in the style of Arthur Conan Doyle, wherein Sherlock Holmes teaches Wat-
son about many probability misconceptions. Simpson’s Paradox, which is impor-
tant in the analysis of categorical data in medical studies, will be addressed in Chap-
ter 11.

The Monty Hall Problem achieved fame and notoriety many years ago. Marilyn
Vos Savant, in her Parade magazine column, presented a solution to the problem in
response to a reader’s question. There was a big uproar; many readers responded in
writing (some in a very insulting manner), challenging her answer. Many of those
who offered the strongest challenges were mathematicians and statisticians. Never-
theless, Vos Savant’s solution, which was essentially correct, can be demonstrated
easily through computer simulation.

In the introduction to her book (1997), Vos Savant summarizes this problem,
which she refers to as the Monty Hall Dilemma, as well as her original answer. She
repeats this answer on page 5 of the text, where she discusses the problem in more
detail and provides many of the readers’ written arguments against her solution.

On pages 5-17, she presents the succession of responses and counterresponses.
Also included in Vos Savant (Appendix, pages 169—-196) is Donald Granberg’s
well-formulated and objective treatment of the mathematical problem. Granberg
provides insight into the psychological mechanisms that cause people to cling to in-
correct answers and not consider opposing arguments. Vos Savant (1997) is also a
good source for other statistical fallacies and misunderstandings of probability.

The Monty Hall Problem may be stated as follows: At the end of each “Let’s
Make a Deal” television program, Monty Hall would let one of the contestants from
that episode have a shot at the big prize. There were three showcase doors to choose
from. One of the doors concealed the prize, and the other two concealed “clunkers”
(worthless prizes sometimes referred to as “goats”).

In fact, a real goat actually might be standing on the stage behind one of the
doors! Monty would ask a contestant to choose a door; then he would expose one of
the other doors that was hiding a clunker. Then the contestant would be offered a
bribe ($500, $1000, or more) to give up the door. Generally, the contestants chose
to keep the door, especially if Monty offered a lot of cash for the bribe; the grand
prize was always worth a lot more than the bribe. The more Monty offered, the
more the contestants suspected that they had the right door. Since Monty knew
which door held the grand prize, contestants suspected that he was tempting them to
give up the grand prize.

The famous problem that Vos Savant addressed in her column was a slight vari-
ation, which Monty may or may not have actually used. Again, after one of the
three doors is removed, the contestant selects one of the two remaining doors. In-
stead of offering money, the host (for example, Monty Hall) allows the contestant
to keep the selected door or switch to the remaining door. Marilyn said that the con-
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testant should switch because his chance of winning if he switches is 2/3, while the
door he originally chose has only a 1/3 chance of being the right door.

Those who disagreed said that it would make no difference whether or not the
contestant switches, as the removal of one of the empty doors leaves two doors,
each with an equal 1/2 chance of being the right door. To some, this seemed to be a
simple exercise in conditional probabilities. But they were mistaken!

One correct argument would be that initially one has a 1/3 chance of selecting
the correct door. Once a door is selected, Monty will reveal a door that hides a
clunker. He can do this only because he knows which door has the prize. If the first
door selected is the winner, Monty is free to select either of the two remaining
doors. However, if the contestant does not have the correct door, Monty must show
the contestant the one remaining door that conceals a clunker.

But the correct door will be found two-thirds of the time using a switching strat-
egy. So in two-thirds of the cases, switching is going to lead one to the winning
door; only in one-third of the cases will switching backfire. Consequently, a strate-
gy of always switching will win about 67% of the time, and a strategy of remaining
with the selected door will win only 33% of the time.

Some of the mathematicians erred because they ignored the fact that the contes-
tant picked a door first, thus affecting Monty’s strategy. Had Monty picked one of
the two “clunker” doors first at random, the problem would be different. The con-
testant then would know that each of the two remaining doors has an equal (50%)
chance of being the right door. Then, regardless of which door the contestant chose,
the opportunity to switch would not affect the chance of winning: 50% if he stays,
and 50% if he switches. The subtlety here is that the difference in the order of the
decisions completely changes the game and the probability of the final outcome.

If you still do not believe that switching doubles your chances of winning, con-
struct the game on a computer. Use a uniform random number generator to pick the
winning door and let the computer follow Monty’s rule for showing a clunker door.
That is the best way to see that after playing the game many times (e.g., at least 100
times employing the switching strategy and 100 times employing the staying strate-
gy), you will win nearly 67% of the time when you switch and only about 33% of
the time when you keep the same door.

If you are not adept at computer programming, you can go to the Susan
Holmes Web site at the Stanford University Statistics Department (www.stat.
stanford.edu/~susan). She has a computerized version of the game that you can
play; she will keep a tally of the number of wins out of the number of times you
switch and also a tally of the number of wins out of the number of times you re-
main with your first choice.

The game works as follows: Susan shows you a cartoon with three doors. First,
you click on the door you want. Next, her computer program uncovers a door
showing a cartoon picture of a donkey. Again, you click on your door if you want
to keep it or click on the remaining door if you want to switch. In response, the
program shows you what is behind your door: either you win or find another don-
key.

Then you are asked if you want to play again. You can play the game as many
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times as you like using whatever strategy you like. Finally, when you decide to
stop, the program shows you how many times you won when you switched and the
total number of times you switched. The program also tallies the number of times
you won when you used the staying strategy, along with the total number of times
you chose this strategy.

5.9 A QUALITY ASSURANCE PROBLEM*

One of the present authors provided consultation services to a medical device com-
pany that was shipping a product into the field. Before shipping, the company rou-
tinely subjected the product to a sequence of quality control checks. In the field, it
was discovered that one item had been shipped with a mismatched label. After
checking the specifics, the company identified a lot of 100 items that included the
mislabeled item at the time of shipment. These 100 items were sampled in order to
test for label mismatches (failures).

The company tested a random sample of 13 out of 100 and found no failures. Al-
though the company believed that this one mismatch was an isolated case, they
could not be certain. They were faced with the prospect of recalling the remaining
items in the lot in order to inspect them all for mismatches. This operation would be
costly and time-consuming. On the other hand, if they could demonstrate with high
enough assurance that the chances of having one or more mismatched labels in the
field is very small, they would not need to conduct the recall.

The lot went through the following sequence of tests:

1. Thirteen out of 100 items were randomly selected for label mismatch check-
ing.

2. No mismatches were found and the 13 were returned to the lot; two items
were pulled and destroyed for other reasons.

3. Of the remaining 98 items, 13 were chosen at random and used for a destruc-
tive test (one that causes the item to be no longer usable in the field).

4. The remaining 85 items were then released.

In the field, it was discovered that one of these 85 had a mismatched label. A sta-
tistician (Chernick) was asked to determine the probability that at least one more of
the remaining 84 items in the field could have a mismatch, assuming:

a) Exactly two are known to have had mismatches.

b) The mismatch inspection works perfectly and would have caught any mis-
matches.

¢) In the absence of any information to the contrary, the two items pulled at the
second stage could equally likely have been any of the 100 items.

*This section is the source of Exercise 5.22.
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The statistician also was asked to determine the probability that at least one more
of the remaining 84 items in the field could have a mismatch, assuming that exactly
three are known to have had mismatches. This problem entails calculating two
probabilities and adding them together: (1) the probability that all three mislabeled
items passed the inspection, and (2) the probability that one was destroyed among
the two pulled while the other two passed. The first of these two probabilities was
of primary interest.

In addition, for baseline comparison purposes, the statistician was to consider
what the probability was of the outcome that if only one item out of the 100 in the
lot were mismatched, it would be among the 85 that passed the sequence of tests.
This probability, being the easiest to calculate, will be derived first.

For the one mismatched label to pass with the 85 that survived the series of in-
spections, it must not have been selected from the first 13 for label mismatch check;
otherwise, it would not have survived (assuming mismatch checking is perfectly ac-
curate). Selecting 13 items at random from 100 is the same as drawing 13 one at a
time at random without replacement. The probability that the item is not in these 13
is the product of 13 probabilities.

Each of these 13 probabilities represents the probability that among the 13
draws, the item is not drawn. On the first draw, this probability is 99/100. On the
second draw, there are now only 99 items to select, resulting in the probability of
98/99 of the items not being selected. Continuing in this way and multiplying these
probabilities together, we see that the probability of the item not being drawn in any
one of the 13 draws is

(99/100)(98/99)(97/98)(96/97)(95/96)(94/95)(93/94)
(92/93)(91/92)(90/91)(89/90)(88/89)(87/88)

This calculation can be simplified greatly by canceling common numerators and de-
nominators to 87/100, which gives us the probability that the item survives the first
inspection.

The second and third inspections occur independently of the first. The probabili-
ty we calculate for the third inspection is conditional on the result of the second in-
spection. So we calculate the probability of surviving those inspections and then
multiply the three probabilities together to get our final result.

In the second stage, the 13 items that passed the initial inspection are replaced
with others. So we again have 100 items to select from. Now, for the item with the
mismatched label to escape destruction, it must not be one of the two items that
were originally drawn. As we assumed that each item is equally likely to be drawn,
the probability that the item with the mismatched label is not drawn is the probabil-
ity that it is not the first one drawn multiplied by the probability that it is not the
second one drawn, given that it was not the first one drawn. That probability is
(98/100)(97/99).

At the third stage, there are only 98 items left and 13 are chosen at random for
destructive testing. Consequently, the method to compute the probability is the
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same as the method used for the first stage, except that the first term in the product
is 97/98 instead of 99/100. After multiplication and cancellation, we obtain 85/98.

The final result is then the product of these three probabilities, namely
[(87/100)][(98/100)(97/99)1[(85/98)]. This simplifies to (87/100)(97/100)(85/99)
after cancellation. The result equals 0.72456 or 72.46%. (Note that a proportion
also may be expressed as a percentage.)

Next we calculate the probability that there are two items with mismatched la-
bels out of the 100 items in the lot. We want to determine the probability that both
are missed during the three stages of inspection. Probability calculations that are
similar to the foregoing calculations apply. Accordingly, we multiply the three
probabilities obtained in the first three stages together.

To repeat, the probabilities obtained in the first three stages (the probability that
both mismatched items are missed during inspection) are as follows:

® The first stage—(87/100)(86/99)
® The second stage, given that they survive the first stage—(98/100)(97/99)
® The third stage, given that they are among the remaining 98—(85/98)(84/97)

The final result is (87/100)(86/99)(98/100)(97/99)(85/98)(84/97). This result sim-
plifies to (87/100)(86/99)(85/100)(84/99) = 0.54506 or 54.51%.

In the case of three items with mismatched labels out of the 100 total items in the
lot, we must add the probability that all three pass inspection to the probability that
two out of three pass. To determine the latter probability, we must have exactly one
of the three thrown out at stage two. This differs from the previous calculation in
that we are adding the possibility of two passing and one failing.

The first term follows the same logic as the previous two calculations. We com-
pute at each stage the probability that all the items with mismatched labels pass in-
spection and multiply these probabilities together. The arguments are similar to
those presented in the foregoing paragraphs. We present this problem as Exercise
5.22.

5.10 EXERCISES

5.1 By using a computer algorithm, an investigator can assign members of twin
pairs at random to an intervention condition in a clinical trial. Assume that
each twin pair consists of dizygotic twins (one male and one female). The
probability of assigning one member of the pair to the intervention condition
is 50%. Among the first four pairs, what is the probability of assigning to the
intervention condition: 1) zero females, 2) one female, 3) two females, 4)
three females, 4) four females?

5.2 In this exercise, we would like you to toss four coins at the same time into the
air and record and observe the results obtained for various numbers of coin
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tosses. Count the frequencies of the following outcomes: 1) zero heads, 2)
one head, 3) two heads, 4) three heads, 5) four heads.

a. Toss the coins one time (and compare to the results obtained in Exercise
5.1).

Toss the coins five times.

Toss the coins 15 times.

Toss the coins 30 times.

Toss the coins 60 times.

oo o

In the science exhibit of a museum of natural history, a coin-flipping machine
tosses a silver dollar into the air and tallies the outcome on a counting device.
What are all of the respective possible outcomes in any three consecutive coin
tosses? In any three consecutive coin tosses, what is the probability of: a) at
least one head, b) not more than one head, c) at least two heads, d) not more
than two heads, e) exactly two heads, f) exactly three heads.

A certain laboratory animal used in preclinical evaluations of experimental
catheters gives birth to only one offspring at a time. The probability of giving
birth to a male or a female offspring is equally likely. In three consecutive
pregnancies of a single animal, what is the probability of giving birth to: (a)
two males and one female, (b) no females, (c) two males first and then a fe-
male, and (d) at least one female. State how the four probabilities are different
from one another. For the foregoing scenario, note all of the possible birth
outcomes in addition to (a) through (d).

What is the expected distribution—numbers and proportions—of each of the
six faces (i.e., 1 through 6) of a die when it is rolled 1000 times?

A pharmacist has filled a box with six different kinds of antibiotic capsules.
There are a total of 300 capsules, which are distributed as follows: tetracy-
cline (15), penicillin (30), minocycline (45), Bactrim (60), streptomycin (70),
and Zithromax (80). She asks her assistant to mix the pills thoroughly and to
withdraw a single capsule from the box. What is the probability that the cap-
sule selected is: a) either penicillin or streptomycin, ») neither Zithromax nor
tetracycline, c) Bactrim, d) not penicillin, e) either minocycline, Bactrim, or
tetracycline?

In an ablation procedure, the probability of acute success (determined at com-
pletion of the procedure) is 0.95 when an image mapping system is used.
Without the image mapping system, the probably of acute success is only
0.80. Suppose that Patient A is given the treatment with the mapping system
and Patient B is given the treatment without the mapping system. Determine
the following probabilities:

a. Both patients 4 and B had acute successes.

b. A had an acute success but B had an acute failure.
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c. B had an acute success but A had an acute failure.

d. Both 4 and B had acute failures.

e. At least one of the patients had an acute success.

f. Describe two ways that the result in (e) can be calculated based on the re-
sults from (a), (b), (c), and (d).

Repeat Exercise 5.4 but this time assume that the probability of having a male
offspring is 0.514 and the probability of having a female offspring is 0.486. In
this case, the elementary outcomes are not equally likely. However, the trials
are Bernoulli and the binomial distribution applies. Use your knowledge of
the binomial distribution to compute the probabilities [(a) through (e) from
Exercise 5.5].

Refer to Formula 5.7, permutations of r objects taken from »n objects. Com-
pute the following permutations:

a. P(8,3)

b. P(7,5)

c. P4,2)

d. P(6,4)

e. P(5,2)

Nine volunteers wish to participate in a clinical trial to test a new medication
for depression. In how many ways can we select five of these individuals for
assignment to the intervention trial?

Use Formula 5.8, combinations of » objects taken out of n, to determine the
following combinations:

a. C(7,4)

b. C(6,4)

c. C(6,2)

d. C(5,2)

e. What is the relationship between 5.11 (d) and 5.9 (e)?
f. What is the relationship between 5.11 (b) and 5.9 (d)?

In how many ways can four different colored marbles be arranged in a row?

Provide definitions for each of these terms:
a. Elementary events

. Mutually exclusive events

. Equally likely events

. Independent events

. Random variable

o o0 o

Give a definition or description of the following:
a. C4,2)
b. P(5,3)
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c. The addition rule for mutually exclusive events
d. The multiplication rule for independent events

Based on the following table of hemoglobin levels for miners, compute the
probabilities described below. Assume that the proportion in each category
for this set of 90 miners is the true proportion for the population of miners.

Class Interval for Hemoglobin (g/cc) Number of Miners
12.0-17.9 24
18.0-21.9 53
22.0-27.9 13
Total 90

Source: Adapted from Dunn, O. J. (1977). Basic Statistics: A Primer for the
Biomedical Sciences, 2nd Edition. Wiley, New York, p. 17.

a. Compute the probability that a miner selected at random from the popula-
tion has a hemoglobin level in the 12.0-17.9 range.

b. Compute the probability that a miner selected at random from the popula-
tion has a hemoglobin level in the 18.0-21.9 range.

c. Compute the probability that a miner selected at random from the popula-
tion has a hemoglobin level in the 22.0-27.9 range.

d. What is the probability that a miner selected at random will have a hemo-
globin count at or above 18.0?

e. What is the probability that a miner selected at random will have a hemo-
globin count at or below 21.9?

f. If two miners are selected at random from the “infinite population” of min-
ers with the distribution for the miners in the table, what is the probability
that one miner will fall in the lowest class and the other in the highest (i.c.,
one has a hemoglobin count in the 12.0 to 17.9 range and the other has a
hemoglobin count in the 22.0 to 27.9 range)?

Consider the following 2 x 2 table that shows incidence of myocardial infarc-
tion (denoted MI) for women who had used oral contraceptives and women
who had never used oral contraceptives. The data in the table are fictitious
and are used just for illustrative purposes.

MI Yes MI No Totals

Used oral contraceptives 55 65 120
Never used oral contraceptives 25 125 150
Totals 80 190 270

Assume that the proportions in the table represent the “infinite population” of
adult women. Let 4 = {woman used oral contraceptives} and let B = {woman
had an MI episode}
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a. Find P(4), P(B), P(4°), and P(B°).
b. What is P(4 N B)?

c. Whatis P(4 U B)?

d. Are A and B mutually exclusive?
e. What are P(A4|B) and P(B|A)?

f. Are A and B independent?

For the binomial distribution, do the following:

a. Give the conditions necessary for the binomial distribution to apply to a
random variable.

b. Give the general formula for the probability of » successes in # trials.

. Give the probability mass function for Bi(10, 0.40).

d. For the distribution in ¢, determine the probability of no more than four
successes.

o

Sickle cell anemia is a genetic disease that occurs only if a child inherits two
recessive genes. Each child receives one gene from the father and one from
the mother. A person can be characterized as follows: The person can have:
(a) two dominant genes (cannot transmit the disease to a child), (b) one domi-
nant and one recessive gene (has the trait and is therefore a carrier who can
pass on the disease to a child, but does not have the disease), or (c) has both
recessive genes (in which case the person has the disease and is a carrier of
the disease). For each parent there is a 50-50 chance that the child will inher-
it either the dominant or the recessive gene. Calculate the probability of the
child having the disease if:

a. Both parents are carriers

b. One parent is a carrier and the other has two dominant genes

c. One parent is a carrier and the other has the disease

Calculate the probability that the child will be a carrier if:

d. Both parents are carriers

e. One parent is a carrier and the other has the disease

f. One parent is a carrier and the other has two dominant genes

Under the conditions given for Exercise 5.18, calculate the probability that
the child will have two dominant genes if:

a. One of the parents is a carrier and the other parent has two dominant genes
b. Both of the parents are carriers

Compute the mean and variance of the binomial distribution Bi(n, p). Find the
arithmetic values for the special case in which both n =10 and p = 1/2.

a. Define the probability density and cumulative probability function for an
absolutely continuous random variable.

b. Which of these functions is analogous to the probability mass function of a
discrete random variable?
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Determine the probability density function and the cumulative distribution
function for a uniform random variable on the interval [0, 1].

5.22 In the example in Section 5.9, consider the probability that three items have
mismatched labels and one of these items is found.

a.

Calculate the probability that all three items would pass inspection and,
therefore, there would be two additional ones out of the 84 remaining in
the field.

. Calculate the probability that exactly one of the two remaining items with

mismatched labels is among the 84 items still in the field. (Hint: Add to-
gether two probabilities, namely the probability that exactly one item is re-
moved at the second stage but none at the third, added to the probability
that exactly one item is removed at the third stage but none at the second).

. Use the results from (a) and (b) above to calculate the probability that at

least one of the two additional items with mismatched labels is among the
84 remaining in the field.

. Based on the result in (c), do you think the probability is small enough not

to recall the 84 items for inspection?

5.11 ADDITIONAL READING

As references 1 and 3 are written for general audiences, students should be comfort-
able with the writing style and level of presentation. A different approach is repre-
sented by reference 2, which is an advanced text on probability intended for gradu-
ate students in mathematics and statistics. However, Feller (reference 2) has an
interesting writing style and explains the paradoxes very well. Students should be
able to follow his arguments but should stay away from any mathematical deriva-
tions. We recommend it because it is one of those rare books that gives the reader
insight into probability results and demonstrates the subtle problems, in particular,
that can arise.

1. Bruce, C. (2000). Conned again, Watson! Cautionary Tales of Logic, Math, and Probabil-
ity. Perseus Publishing, Cambridge, Massachusetts.

2. Dunn, O. J. (1977). Basic Statistics: A Primer for the Biomedical Sciences 2nd Edition.
Wiley, New York.

3. Feller, W. (1971). An Introduction to Probability Theory and Its Applications: Volume II.
2nd Edition, Wiley, New York.

4. Vos Savant, M. (1997). The Power of Logical Thinking: Easy Lessons in the Art of Rea-
soning ... and Hard Facts about Its Absence in Our Lives. St Martin’s Griffin, New

York.



CHAPTER 6

The Normal Distribution

We know not to what are due the accidental errors, and precisely
because we do not know, we are aware they obey the law of

Gauss. Such is the paradox.
—Henri Poincare, The Foundation of Science: Science and Method, p. 406.

6.1 THE IMPORTANCE OF THE NORMAL DISTRIBUTION
IN STATISTICS

The normal distribution is an absolutely continuous distribution (defined in Chapter
5) that plays a major role in statistics. Unlike the examples we have seen thus far,
the normal distribution has a nonzero density function over the entire real number
line. You will discover that because of the central limit theorem, many random vari-
ables, particularly those obtained by averaging others, will have distributions that
are approximately normal.

The normal distribution is determined by two parameters: the mean and the vari-
ance. The fact that the mean and the variance of the normal distribution are the nat-
ural parameters for the normal distribution explains why they are sometimes pre-
ferred as measures of location and scale.

For a normal distribution, there is no need to make the distinction among the
mean, median, and mode. They are all equal to one another. The normal distribution
is a unimodal (i.e., has one mode) symmetric distribution. We will describe its den-
sity function and discuss its important properties in Section 6.2. For now, let us gain
a better appreciation of its importance in statistics and statistical applications.

The normal distribution was discovered first by the French mathematician Albert
DeMoivre in the 1730s. Two other famous mathematicians, Pierre Simon de
Laplace (also from France) and Karl Friedrich Gauss from Germany, motivated by
applications to social and natural sciences, independently rediscovered the normal
distribution.

Gauss found that the normal distribution with a mean of zero was often a useful
model for characterizing measurement errors. He was very much involved in astro-
nomical measurements of the planetary orbits and used this theory of errors to help
fit elliptic curves to these planetary orbits.

Introductory Biostatistics for the Health Sciences, by Michael R. Chernick 121
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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DeMoivre and Laplace both found that the normal distribution provided an in-
creasingly better approximation to the binomial distribution as the number of trials
became large. This discovery was a special form of the Central Limit Theorem that
later was to be generalized by 20th century mathematicians including Liapunov,
Lindeberg, and Feller.

In the 1890s in England, Sir Francis Galton found applications for the normal
distribution in medicine; he also generalized it to two dimensions as an aid in ex-
plaining his theory of regression and correlation. In the 20th century, Pearson, Fish-
er, Snedecor, and Gosset, among others, further developed applications and other
distributions including the chi-square, F' distribution, and Student’s ¢ distribution,
all of which are related to the normal distribution. Some of the most important early
applications of the normal distribution were in the fields of agriculture, medicine,
and genetics. Today, statistics and the normal distribution have a place in almost
every scientific endeavor.

Although the normal distribution provides a good probability model for many
phenomena in the real world, it does not apply universally. Other parametric and
nonparametric statistical models also play an important role in medicine and the
health sciences.

A common joke is that theoreticians say the normal distribution is important be-
cause practicing statisticians have discovered it to be so empirically. But the prac-
ticing statisticians say it is important because the theoreticians have proven it so
mathematically.

6.2 PROPERTIES OF NORMAL DISTRIBUTIONS

The normal distribution has three main characteristics. First, its probability density
is bell-shaped, with a single mode at the center. As the tails of the normal distribu-
tion extend to £, the distribution decreases in height and remains positive. It is
symmetric in shape about u, which is both its mean and mode. As detailed as this
description may sound, it does not completely characterize the normal distribution.
There are other probability distributions that are symmetric and bell-shaped as well.
The normal density function is distinguished by the rate at which it drops to zero.
Another parameter, o, along with the mean, completes the characterization of the
normal distribution.

The relationship between o and the area under the normal curve provides the
second main characteristic of the normal distribution. The parameter o is the stan-
dard deviation of the distribution. Its square is the variance of the distribution.

For a normal distribution, 68.26% of the probability distribution falls in the in-
terval from w — o to u + o. The wider interval from w — 20 to u + 20 contains
95.45% of the distribution. Finally, the interval from w — 30 to u + 30 contains
99.73% of the distribution, nearly 100% of the distribution. The fact that nearly all
observations from a normal distribution fall within +3¢ of the mean explains why
the three-sigma limits are used so often in practice.

Third, a complete mathematical description of the normal distribution can be
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found in the equation for its density. The probability density function f{x) for a nor-
mal distribution is given by

1 (e p)?
e 202

Jx)=

oV2mr

One awkward fact about the normal distribution is that its cumulative distribu-
tion does not have a closed form. That means that we cannot write down an explicit
formula for it. So to calculate probabilities, the density must be integrated numeri-
cally. That is why for many years statisticians and other practitioners of statistical
methods relied heavily on tables that were generated for the normal distribution.

One important feature was very helpful in making those tables. Although to
specify a particular normal distribution one has to provide the two parameters, the
mean and the variance, a simple equation relates the general normal distribution to
one particular normal distribution called the standard normal distribution.

For the general normal distribution, we will use the notation N(u, ¢2). This ex-
pression denotes a normal distribution with mean w and variance ¢2. The standard
normal distribution has mean 0 and variance 1. So N(0, 1) denotes the standard nor-
mal distribution. Figure 6.1 presents a standard normal distribution with standard
deviation units shown on the x-axis.

-4 -3 -2 -1 0 1 2 3 4
[_ 68.2% __J
95.4%
99.8%

Figure 6.1. The standard normal distribution.
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Suppose X is N(u, 0?); if we let Z = (X — w)/o, then Z is N(0, 1). The values for
Z, an important distribution for statistical inference, are available in a table. From
the table, we can find the probability P for any values a < b, such that P(a = Z =
b). But, since Z= (X — p)/o, thisisjust Pla = (X—pw)/o=b)=Plac = (X—p) =
bo) = P(ac+ uw = X = bo + pn). Thus, to make inferences about X, all we need to
do is to convert X to Z, a process known as standardization.

So, probability statements about Z can be translated into probability statements
about X through this relationship. Therefore, a single table for Z suffices to tell us
everything we need to know about X (assuming both w and o are specified).

6.3 TABULATING AREAS UNDER THE STANDARD
NORMAL DISTRIBUTION

Let us suppose that in a biostatistics course, students are given a test that has 100 to-
tal possible points. Assume that the students who take this course have a normal
distribution of scores with a mean of 75 and a standard deviation of 7. The instruc-
tor uses the grading system presented in Table 6.1. Given this grading system and
the assumed normal distribution, let us determine the percentage of students that
will receive A, B, C, D, and F. This calculation will involve exercises with tables of
the standard normal distribution.

First, let us repeat this table with the raw scores replaced by the Z scores. This
process will make it easier for us to go directly to the standard normal tables. Recall
that we arrive at Z by the linear transformation Z = (X — w)/o. In this case u =75, o=
7, and the X values we are interested in are the grade boundaries 60, 70, 80, and 90. Let
us go through these calculations step by step for X =90, X= 80, X= 70, and X = 60.

Step 1: Subtract u from X: 90 — 75 = 15.

Step 2: Divide the result of step one by o: 15/7 = 2.143 (The resulting Z score =
2.143)

Now take X = 80.

Step 1: Subtract u from X: 80 — 75 =5.
Step 2: Divide the result of step one by o: 5/7=0.714 (Z=0.714)

TABLE 6.1. Distribution of Grades in a
Biostatistics Course

Range of Scores Grade

Below 60
60-69
70-79
80-89
90-100

>w O g
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Now take X = 70.

Step 1: Subtract u from X: 70-75 =-5.
Step 2: Divide the result of step one by o: —5/7 =-0.714 (Z=-0.714)

Now take X = 60.

Step 1: Subtract w from X: 60 — 75 =—15.
Step 2: Divide the result of step one by o: —15/7 =-2.143 (Z=-2.143)

The distribution of percentiles and corresponding grades are shown in Table 6.2.

To determine the probability of an F we need to compute P(Z <-2.143) and find
its value in a table of Z scores. The tables in our book (see Appendix D) give us P(0
< Z<b), where b is a positive number. Other probabilities are obtained using prop-
erties of the standard normal distribution. These properties are given in Table 6.3.
The areas associated with these properties are given in Figure 6.2.

Using the properties shown in the equations in Figure 6.2, Parts (a) through (g),
we can calculate any desired probability. We are seeking probabilities on the left-
hand side of each equation. The terms farthest to the right in these equations are the
probabilities that can be obtained directly from the Z Table. (Refer to Appendix E.)

For P(Z <-2.143) we use the property in Part (d) and see that the result is 0.50-P(0
<Z<2.143). The table of Z values is carried to only two decimal places. For greater
accuracy we could interpolate between 2.14 and 2.15 to get the answer. But for sim-
plicity, let us round 2.143 to 2.14 and use the probability that we obtain for Z=2.14.

TABLE 6.2. Distribution of Z Scores and Grades

Range of Z Scores Grade

Below -2.143

Between —2.143 and —0.714
Between —0.714 and 0.714
Between 0.714 and 2.143
Above 2.143

>wagom

TABLE 6.3. Properties of the Table of Standard Scores (Used for Finding Z Scores)

P(Z>b)=050-P(0<Z<b)

P(-b<Z<b)=2P(0<Z<b)

P(-b<Z<b)y=P0O<Z<b)

P(Z<-b)=P(Z>b)=0.50-P(0<Z<b)
Pa<Z<b)=P(0<Z<a)+P0O<Z<b), wherea>0
Pla<Z<b)=P(0<Z<b)-PO<Z<a),where0<a<b
P(—a<Z<-b)=P(b<Z<a)=P0<Z<a)-P0<Z<b), where —a <-b <0 and
hencea>5b>0

©R -0 0o o8




126

P@Z > b)

(©
_a b
‘P-a<Z<b)
- -3 -2 ~1 ° 1 2| 3 .
@

THE NORMAL DISTRIBUTION
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P(-b <Z <b)
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Figure 6.2. The properties of Z Scores illustrated. Parts (a) through (g) illustrate the properties shown in
Table 6.3. Note that b is symmetric. A negative letter (—a or —b) indicates that the Z score falls to the left

of the mean, which is 0.
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The Z table shows us that P(0 < Z < 2.14) = 0.4838. So the probability of getting
an F is just 0.5000 — 0.4838 = 0.0162.

The probability of a D is P(-2.14 < Z < —0.71) by rounding to two decimal
places. For this probability we must use the property in Part (g). So we have
P(2.14<Z<-071)=P0<Z<214) - P00 <Z<0.71) = 0.4838 — 0.2611 =
0.2227.

The probability of a C is P(-0.71 < Z < 0.71). Here we use property in Part (b).
We have P(-0.71 <Z<0.71) =2P(0 < Z<0.71) =2(0.2611) = 0.5222.

The probability of a B is P(0.71 < Z <2.14). We could calculate this probability
directly by using the property in Part (f). However, looking closely at Part (g), we
see that it is the same as P(-2.14 < Z <—0.71), a probability that we have already
calculated for a D. So we save some work and notice that the probability of a B is
0.2227.

The probability of an A is P(Z > 2.14). We can obtain this value directly from
the property in Part (a). Again, if we look carefully at the property in Part (d), we
see that P(Z > 2.14) = P(Z <-2.14), which equals the right-hand side that we calcu-
lated previously for an F. So again, careful use of the properties can save us some
work! The probability of an A is 0.0162.

We might feel that we are giving out too many Ds and Bs, possibly because the
test is a little harder than the usual test for this class. If the instructor wants to adjust
the test based on what the standard deviation should be (i.e., curve the test), the in-
structor can make the following adjustments. The mean of 75 is where it should be,
so only an adjustment is needed to take account of the spread of the score. If the ob-
served mean were 70, an adjustment for this bias also could be made.

We will not go through the exercise of curving the tests, but let us see what
would happen if we in fact did have a lower standard deviation of 5, for example,
with an average of 75. In that case, what would we find for the distribution of
grades?

We will repeat all the steps we went through before. The only difference will be
in the final Z scores that we obtain, because we divide by 5 instead of 7.

Step 1: Subtract w from X: 90 — 75 =15

Step 2: Divide the result of step one by o: 15/5 = 3.00. (The resulting Z score =
3.00.)

Now take X = 80.

Step 1: Subtract w from X: 80 —75 =15
Step 2: Divide the result of step one by o: 5/5=1.00 (Z=1.00)

Now take X' = 70.

Step 1: Subtract u from X: 70 — 75 = -5
Step 2: Divide the result of step one by o7 —5/5 =-1.00 (Z=-1.00)
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Now take X = 60.

Step 1: Subtract w from X: 60 — 75 =—15
Step 2: Divide the result of step one by o: —15/5 =-3.00 (Z =-3.00)

These results are summarized in Table 6.4. In this case we obtained whole integers
that are easy to work with. Since we already know how to interpret 1o and 3¢ in
terms of normal probabilities, we do not even need the tables but we will use them
anyway.

We will use shorthand notation: P(F) = probability of receiving an F = P(Z <
—3). Recall that by symmetry, P(F) = P(4) and P(D) = P(B). First compute P(4):
P(4)=P(Z>3)=0.50-P(0 < Z<3)=0.50-0.4987 = 0.0013 = P(F).

Only about 1 in 1000 students will receive an F. Although the low number of Fs
will please the students, an A will be nearly impossible! By symmetry, P(B) = P(1 <
Z<3)=P(0<Z<3)-P(0<Z<1)=0.4987-0.3413=0.1574 = P(D). As aresult,
approximately 16% of the class will receive a B and 16% a D. These proportions of
Bs and Ds represent fairly reasonable outcomes. Now P(C)=P(-1 <Z<1)=2 P(0
<Z<1)=2(0.3413) = 0.6826. As expected, more than two-thirds of the class will
receive the average grade of C.

Until now, you have learned how to use the Z table (Appendix E) by applying
the seven properties shown in Table 6.3 to find grade distributions. In these exam-
ples, we always started with specific endpoints or intervals for Z and looked up the
probabilities associated with them. In other situations, we may know the specified
probability for the normal distribution and want to look up the corresponding Z val-
ues for an endpoint or interval.

Consider that we want to find a symmetric interval for a C grade on a test but we
do not have specific cutoffs in mind. Rather, we specify that the interval should be
centered at the mean of 75, be symmetric, and contain 62% of the population. Then
P(C) should have the form: P(—a < Z <a)=2P(0 <Z<a). We want P(C) = 0.62, so
P(0 <Z<a)=0.31. We now look for a value a that satisfies P(0 < Z < a) =0.31.
Scanning the Z table, we see that a value of a = 0.88 gives P(0 < Z < a) = 0.3106.
That is good enough. So a = 0.88.

TABLE 6.4. Distribution of Z Scores When o Changes
from 7 to 5

Range of Z Scores Grade

Below —3.00

Between —3.00 and —1.00
Between —1.00 and 1.00
Between 1.00 and 3.00
Above 3.00

> Qg
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6.4 EXERCISES

6.1

6.2

6.3

6.4

Define the following terms in your own words:
Continuous distribution
Normal distribution
Standard normal distribution
Probability density function
Standardization
Standard score
Z score
Percentile

The following questions pertain to some important facts to know about a nor-
mal distribution:
a. What are three important properties of a normal distribution?
b. What percentage of the values are:
1. within 1 standard deviation of the mean?
ii. 2 standard deviations or more above the mean?
iii. 1.96 standard deviations or more below the mean?
iv. between the mean and +2.58 standard deviations?
v. 1.28 standard deviations above the mean?

The following questions pertain to the standard normal distribution:

a. How is the standard normal distribution defined?

b. How does a standard normal distribution compare to a normal distribu-
tion?

c. What is the procedure for finding an area under the standard normal
curve?

d. How would the typical normal distribution of scores on a test administered
to a freshman survey class in physics differ from a standard normal distri-
bution?

e. What characteristics of the standard normal distribution make it desirable
for use with some problems in biostatistics?

If you were a clinical laboratory technician in a hospital, how would you ap-
ply the principles of the standard normal distribution to define normal and
abnormal blood test results (e.g., for low-density lipoprotein)?

To solve Exercises 6.5 through 6.9, you will need to refer to the standard normal

table.

6.5

Referring to the properties shown in Table 6.3, find the standard normal
score (Z score) associated with the following percentiles: (a) Sth, (b) 10th, (c)
20th, (d) 25th, (e) 50th, (f) 75th, (g) 80th, (h) 90th, and (i) 95th.
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6.6

6.7

6.8

6.9

6.10

THE NORMAL DISTRIBUTION

Determine the areas under the standard normal curve that fall between the
following values of Z:

a. 0 and 1.00

b. 0O and 1.28

0 and —1.65

1.00 and 2.33

—1.00 and -2.58

(L S

The areas under a standard normal curve also may be considered to be proba-
bilities. Find probabilities associated with the area:

a. Above Z=2.33

b. Below Z=-2.58

c. Above Z=1.65 and below Z =-1.65
d. Above Z=1.96 and below Z=-1.96
e. Above Z=2.33 and below Z=-2.33

Another way to express probabilities associated with Z scores (assuming a
standard normal distribution) is to use parentheses according to the format:
P(Z>0)=0.5000, for the case when Z = 0. Calculate the following probabil-
ities:

a. P(Z<-290)=

b. P(Z>-1.11)=

. P(Z<0.66)=

. P(Z>3.00)=

. P(Z<-1.50)=

[CRE =N ]

The inverse of Exercise 6.8 is to be able to find a Z score when you know a
probability. Assuming a standard normal distribution, identify the Z score in-
dicated by a # sign that is associated with each of the following probabilities:
. P(Z<#)=0.9920
. P(Z>#)=0.0005
. P(Z<#)=0.0250
. P(Z<#)=0.6554
. P(Z>#)=0.0049

o o0 o

A first year medical school class (n = 200) took a first midterm examination
in human physiology. The results were as follows (X = 65, S = 7). Explain
how you would standardize any particular score from this distribution, and
then solve the following problems:

a. What Z score corresponds to a test score of 40?

b. What Z score corresponds to a test score of 50?

What Z score corresponds to a test score of 607

What Z score corresponds to a test score of 70?

How many students received a score of 75 or higher?

o /0
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6.11

6.12

6.13

6.14

6.15

6.16

The mean height of a population of girls aged 15 to 19 years in a northern
province in Sweden was found to be 165 cm with a standard deviation of 15
cm. Assuming that the heights are normally distributed, find the heights in
centimeters that correspond to the following percentiles:

Between the 20th and 50th percentiles.

Between the 40th and 60th percentiles.

Between the 10th and 90th percentiles.

Above the 80th percentile.

Below the 10th percentile.

Above the 5th percentile.

moe o o

In a health examination survey of a prefecture in Japan, the population was
found to have an average fasting blood glucose level of 99.0 with a standard
deviation of 12. Determine the probability that an individual selected at ran-
dom will have a blood sugar reading:

a. Greater than 120 (let the random variable for this be denoted as X; then we
can write the probability of this event as P(X > 120)

Between 70 and 100, P(70 < X < 100)

Less than 83, P(X < 83)

Less than 70 or greater than 110, P(X > 110) + P(X < 70)

That deviates by more than 2 standard deviations (24 units) from the mean

o o o

Repeat Exercise 6.12 but with a standard deviation of 9 instead of 12.

Repeat Exercise 6.12 again, but this time with a mean of 110 and a standard
deviation of 15.

A community epidemiology study conducted fasting blood tests on a large
community and obtained the following results for triglyceride levels (which
were normally distributed): males—u = 100, o = 30; females—u = 85, o=
25. If we decide that persons who fall within two standard deviations of the
mean shall not be referred for medical workup, what triglyceride values
would fall within this range for males and females, respectively? If we decide
to refer persons who have readings in the top 5% for medical workup, what
would these triglyceride readings be for males and females, respectively?

Assume the weights of women between 16 and 30 years of age are normally
distributed with a mean of 120 pounds and a standard deviation of 18 pounds.
If 100 women are selected at random from this population, how many would
you expect to have the following weights (round off to the nearest integer):

a. Between 90 and 145 pounds

b. Less than 85 pounds

¢. More than 150 pounds

d. Between 84 and 156 pounds
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6.17

6.18

6.19

THE NORMAL DISTRIBUTION

Suppose that the population of 25-year-old American males has an average
remaining life expectancy of 50 years with a standard deviation of 5 years
and that life expectancy is normally distributed.

a. What proportion of these 25-year-old males will live past 757

b. What proportion of these 25-year-old males will live past 85?

c. What proportion of these 25-year-old males will live past 90?

d. What proportion will not live past 65?

The population of 25-year-old American women has a remaining life ex-
pectancy that is also normally distributed and differs from that of the males in
Exercise 6.17 only in that the women’s average remaining life expectancy is
5 years longer than for the males.

. What proportion of these 25-year-old females will live past 75?

. What proportion of these 25-year-old females will live past 85?

. What proportion of these 25-year-old females will live past 95?

. What proportion will not live past 65?

o

e o o

It is suspected that a random variable has a normal distribution with a mean
of 6 and a standard deviation of 0.5. After observing several hundred values,
we find that the mean is approximately equal to 6 and the standard deviation
is close to 0.5. However, we find that 53% percent of the observations are be-
tween 5.5 and 6.5 and 83% are between 5.0 and 6.0. Does this evidence in-
crease or decrease your confidence that the data are normally distributed?
Explain your answer.

6.5 ADDITIONAL READING

The following is a list of a few references that can provide more detailed informa-
tion about the properties of the normal distribution. Reference #1 (Johnson and
Kotz, 1970) covers the normal distribution. Reference #2 (Kotz and Johnson, 1985)
cites I. W. Molenaar’s article on normal approximations to other distributions. Ref-
erence #3 (also Kotz and Johnson, 1985) cites C. B. Read’s article on the normal
distribution.

1. Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics: Continuous Univariate
Distributions, Volume I (Chapter 13). Wiley, New York.

2. Kotz, S. and Johnson, N. L. (editors). (1985). Encyclopedia of Statistical Sciences, Vol-
ume 6, pp. 340-347, Wiley, New York.

3. Kotz, S. and Johnson, N. L. (editors). (1985). Encyclopedia of Statistical Sciences, Vol-
ume 6, pp. 347-359, Wiley, New York.

4. Patel, J. K. and Read, C. B. (1982). Handbook of the Normal Distribution. Marcel
Dekker, New York.

5. Stuart, A. and Ord, K. (1994). Kendall’s Advanced Theory of Statistics, Volume 1: Distri-
bution Theory, Sixth Edition, pp. 191-197. Edward Armnold, London.



CHAPTER 7

Sampling Distributions for Means

[T]o quote a statement of Poincare who said (partly in jest no
doubt) that there must be something mysterious about the normal
law since mathematicians think it is a law of nature, whereas

physicists are convinced that it is a mathematical theorem.
—Mark Kac, Statistical Independence in Probability, Analysis and Number Theory,
Chapter 3: The Normal Law, p. 52

7.1 POPULATION DISTRIBUTIONS AND THE DISTRIBUTION OF
SAMPLE AVERAGES FROM THE POPULATION

What is the strategy of statistical inference? Statistical inference refers to reaching
conclusions about population parameters based on sample data. Statisticians make
inferences based on samples from finite populations (even large ones such as the
U.S. population) or conceptually infinite populations (a probability model of a dis-
tribution for which our sample can be thought of as a set of independent observa-
tions drawn from this distribution). Other examples of finite populations include all
of the patients seen in a hospital clinic, all patients known to a tumor registry who
have been diagnosed with cancers, or all residents of a nursing home.

As an example of a rationale for sampling, we note that it would be prohibitively
expensive for a research organization to conduct a health survey of the U.S. popula-
tion by administering a health status questionnaire to everyone in the United States.
On the other hand, a random sample of this population, say 2000 Americans, may
be feasible. From the sample, we would estimate health parameters for the popula-
tion based on responses from the random sample. These estimates are random be-
cause they depend on the particular sample that was chosen.

Suppose that we calculate a sample mean (X) as an estimate of the population
mean (w). It is possible to select many samples of size #n from a population. The val-
ue of this sample estimate of the parameter would differ from one random sample to
the next. By determining the distribution of these estimates, a statistician is then
able to draw an inference (e.g., confidence interval statement or conclusion of a hy-

Introductory Biostatistics for the Health Sciences, by Michael R. Chernick 133
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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pothesis test) based on the distribution of sample statistics. This distribution that is
so important to us is called the sampling distribution for the estimate.

Similarly, we will observe for many different parameters of populations the sam-
pling distribution of their estimates. First, we will start out with the simplest, name-
ly, the sample estimate of a population mean.

Let us be clear on the difference between the sample distribution of an observa-
tion and the sampling distribution of the mean of the observations. We will note that
the parent populations for some data may have highly skewed distributions (either
left or right), multimodal distributions, or a wide variety of other possible shapes.
However, the central limit theorem, which we will discuss in this chapter, will show
us that regardless of the shape of the distribution of the observations for the parent
population, the sample average will have a distribution that is approximately a nor-
mal distribution. This important result partially explains the importance in statistics
of the normal or Gaussian distribution that we studied in the previous chapter.

We will see examples of data with distributions very different from the normal
distribution (both theoretical and actual) and will see that the distribution of the av-
erage of several samples, even for sample sizes as small as 5 or 10, will become
symmetric and approximately normal—an amazing result! This result can be
proved by using tools from probability theory, but that involves advanced probabil-
ity tools that are beyond the scope of the course. Instead, we hope to convince you
of the result by observing what the exact sampling distribution is for small sample
sizes. You will see how the distribution changes as the sample size increases.

Recall from a previous exercise the seasonal home run totals of four current ma-
jor league sluggers—Ken Griffey Jr, Mark McGwire, Sammy Sosa, and Barry
Bonds. The home run totals for their careers, starting with their “rookie” season
(i.e., first season with enough at bats to qualify as a rookie) is given as follows:

McGwire 49, 32, 33,39, 22, 42,9, 9, 39, 52, 58, 70, 65, 32

Sosa 4,15, 10, 8, 33, 25, 36, 40, 36, 66, 63, 50

Bonds 16, 25, 24, 19, 33, 25, 34, 46, 37, 33, 42, 40, 37, 34, 49
Griffey 16, 22,22,27, 45, 40, 17, 49, 56, 56, 48, 40

This gives us a total of 53 seasonal home run totals for top major league home
run hitters. Let us consider this distribution (combining the totals for these four
players) to be a population distribution for home run hitters. Now let us first look at
a histogram of this distribution taking the intervals 0-9, 10-19, 20-29, 30-39,
40-49, 50-59, and 60-70 as the class intervals. Table 7.1 shows the histogram for
these data.

The mean for this population is 35.26 and the population variance is 252.95. The
population standard deviation is 15.90. These three parameters have been computed
by rounding to two decimal places. Figure 7.1 is a bar graph of the histogram for
this population.

We notice that although the distribution is not a normal distribution, it is not
highly skewed either. Now let us look at the means for random samples of size 5.
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TABLE 7.1. Histogram for Home run Hitters
“Population” Distribution

Class Interval Frequency

0-9 4
10-19 6
20-29 8
30-39 14
40-49 12
50-59 5
60-70 4
Total 53

We shall use a random number table to generate 25 random samples each of size 5.
For each sample we will compute the average and the sample estimate of standard
deviation and variance. The indices for the 53 seasonal home run totals will be se-
lected randomly from the table of uniform numbers. The indices correspond to the
home run totals as shown in Table 7.2.

We sample across the table of random numbers until we have generated 25 sam-
ples of size 5. For each sample, we are sampling without replacement. So if a par-
ticular index is repeated, we will use the rejection sampling method that we learned
in Chapter 2.

We refer to Table 2.1 for the random numbers. Starting in column row one and
going across the columns and down we get the following numbers: 69158, 38683,
41374, 17028, and 09304. Interpreting these numbers as decimals 0.69158,
0.38683, 0.41374, 0.17028, and 0.09304 we then must determine the indices and
decide whether we must reject any numbers because of repeats. To determine the
indices, we divide the interval [0, 1] into 53 equal parts so that the indices corre-
spond to random numbers in intervals as shown in Table 7.3.

16
14
12

Relative Frequency in %

o N A OO
s

0-9 10-19 20-29 30-39 40-49 50-59 60-70
Class Interval

Figure 7.1. Relative frequency histogram for home run sluggers population distribution.
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TABLE 7.2. Home Runs: Correspondence to Indices

Index Home Run Total
1 49
2 32
3 33
4 39
5 22
6 42
7 9
8 9
9 39

10 52
11 58
12 70
13 65
14 32
15 4
16 15
17 10
18 8
19 33
20 25
21 36
22 40
23 36
24 66
25 63
26 50
27 16
28 25
29 24
30 19
31 33
32 25
33 34
34 46
35 37
36 33
37 42
38 40
39 37
40 34
41 49
42 16
43 22
44 22
45 27

46 45
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TABLE 7.2. Continued

Index Home Run Total
47 40
48 17
49 49
50 56
51 56
52 48
53 40

Scanning Table 7.3 we find the following correspondences: 0.69158 — 37,
0.38683 — 21, 0.41374 — 22, 0.17028 — 10, and 0.09304 — 5. Since none of the
indices repeated, we do not have to reject any random numbers and the first sample
is obtained by matching the indices to home runs in Table 7.2.

We see that the correspondence is 37 — 42, 21 — 36, 22 — 40, 10 — 52, and 5
— 22. So the random sample is 42, 36, 40, 52, and 22. The sample mean, sample
variance, and sample standard deviation rounded to two decimal places for this
sample are 38.40, 118.80, and 10.90, respectively.

Although these numbers will vary from sample to sample, they should be com-
parable to the population parameters. However, thus far we have computed only
one sample estimate of the mean, namely, 38.40. We will focus attention on the dis-
tribution of the 25 sample means that we generate and the standard deviation and
variance for that distribution.

Picking up where we left off in Table 2.1, we obtain for the next sequence of 5
random numbers 10834, 10332, 07534, 79067, and 27126. These correspond to the
indices 6, 6, 4, 42, and 15 respectively. Because 10332 led to a repeat of the index
6, we have to reject it and we complete the sample by adding the next number
00858 which corresponds to the index 1.

The second sample now consists of the indices 6, 4, 42, 15, and 1, and these in-
dices correspond to the following homerun totals: 42, 39, 16, 4, and 49. The mean,

TABLE 7.3. Random Number Correspondence to Indices

Index Interval of Uniform Random Numbers

0.00000-0.01886
0.01887-0.03773
0.03774-0.05659
0.05660-0.07545
0.07546-0.09431
0.09432-0.11317
0.11318-0.13203
0.13204-0.15089

eI e Y N R S

(continues)



138 SAMPLING DISTRIBUTIONS FOR MEANS

TABLE 7.3. Continued

Index Interval of Uniform Random Numbers

9 0.15090-0.16975
10 0.16976-0.18861
11 0.18861-0.20747
12 0.20748-0.22633
13 0.22634-0.24519
14 0.24520-0.26405
15 0.26406-0.28291
16 0.28292-0.30177
17 0.30178-0.32063
18 0.32064-0.33949
19 0.33950-0.35835
20 0.35836-0.37721
21 0.37722-0.39607
22 0.39608-0.41493
23 0.41494-0.43379
24 0.43380-0.45265
25 0.45266-0.47151
26 0.47152-0.49037
27 0.49038-0.50923
28 0.50924-0.52809
29 0.52810-0.54695
30 0.54696- 0.56581
31 0.56582-0.58467
32 0.58468-0.60353
33 0.60354-0.62239
34 0.62240-0.64125
35 0.64126-0.66011
36 0.66012-0.67897
37 0.67898-0.69783
38 0.69784-0.71669
39 0.71670-0.73555
40 0.73556-0.75441
41 0.75442-0.77327
42 0.77328-0.79213
43 0.79214-0.81099
44 0.81100-0.82985
45 0.82986-0.84871
46 0.84872-0.86757
47 0.86758-0.88643
48 0.88644-0.90529
49 0.90530-0.92415
50 0.92416-0.94301
51 0.94302-0.96187
52 0.96188-0.98073

53 0.98074-0.99999
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standard deviation, and variance for this sample are 30.0, 19.09, and 364.50, respec-
tively.

We leave it to the reader to go through the rest of the steps to verify the remain-
ing 23 samples. We will merely list the 25 samples along with their mean values:

1. 4236405222 38.40
2. 423916449 30.00
3.3352406317 41.00
4. 837494028 31.80
5. 3339562724 3580
6. 4548491066 43.60
7. 1522322234 25.00
8. 3746561633 37.60
9. 36940394 25.60
10. 4239341733 33.00
11. 3334491540 34.20
12. 3452564224 41.60
13. 2222333448 31.80
14. 1539221650 28.40
15. 3340524240 41.40
16. 4042454916 38.40
17. 6540425033  46.00
18. 253733498 30.40
19. 3252653970 51.60
20. 4950394025 40.60
21. 5248424049 46.20
22. 4240663325 41.20

N
w

. 4042101650 31.60
. 946191734 25.00
. 925583346 34.20

NN
[V N

The average of the 25 estimates of the mean is 36.18, its sample standard deviation
is 7.06, and the sample variance is 49.90.

Figure 7.2 shows the histogram for the sample means. We should compare it to
the histogram for the original observations. The new histogram that we have drawn
appears to be centered at approximately the same point but has a much smaller stan-
dard deviation and is more symmetric, just like the histogram for a normal distribu-
tion might look.

We note that the range of the averages is from 25 to 51.60, whereas the range of
the original observations went from 4 to 70. The observations have a mean of 35.26,
a standard deviation of 15.90, and a variance of 252.94, whereas the averages have
a mean of 36.18, a standard deviation of 7.06, and a variance of 49.90.
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Relative Frequency in %

0-9 10-19 20-29 30-39 40-49 50-59 60-70
Class Interval

Figure 7.2. Relative frequency histogram for home run sluggers sample distribution for the mean of 25
samples.

We note that the means are close, differing only by 0.92 in absolute magnitude.
The standard deviation is reduced by a factor of 15.90/7.06 = 2.25 and the variance
is reduced by a factor of 252.94/49.90 = 5.07. This agrees very well with the theo-
ry you will learn in the next two sections. Based on that theory, the average has the
same mean as the original samples (i.e., it is an unbiased estimate of the population
mean), the standard deviation for the mean of 5 samples is the population standard
deviation divided by /5 = 2.24, and the variance therefore by the population vari-
ance divided by 5.

We compare these values based on comparing the population parameters to the
observed samples with the theoretical values 0.92 to 0.00, 2.25 to 2.24, and 5.07
to 5.00. The reason that the results differ slightly from the theory is because we
only took 25 random samples and therefore only got 25 averages for the distribu-
tion. Had we done 100 or 1000 random samples, the observed results would have
been closer to the theoretical results for the distribution of an average of 5 sam-
ples.

The histogram in Figure 7.2 does not look as symmetric as a normal distribution
because we have a few empty class intervals and the filled ones are too wide. For
the original data, we set up 7 class intervals for 53 observations that ranged from 4
to 70. For the means, we only have 25 values but their range is narrower—from 25
to 51.6. So we may as well take 7 class intervals of width 4 going from 24 to 52 as
follows (see Figure 7.3):

Greater than or equal to 24 and less than or equal to 28
Greater than 28 and less than or equal to 32
Greater than 32 and less than or equal to 36
Greater than 36 and less than or equal to 40
Greater than 40 and less than or equal to 44
Greater than 44 and less than or equal to 48
Greater than 48 and less than or equal to 52.
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Figure 7.3. Relative frequency histogram for home run sluggers sample distribution for the mean of 25
samples (new class intervals).

This picture is not as close to a normal distribution as the theory suggests. First
of all, because we are only averaging 5 samples, the normal approximation will not
be as good as if we averaged 20 or 50. Also, the histogram is only based on 25 sam-
ples. A much larger number of random samples might be necessary for the his-
togram to closely approximate the sampling distribution of the mean of 5 sample
seasonal home run totals.

7.2 THE CENTRAL LIMIT THEOREM

Section 7.1 illustrated that as we average sample values (regardless of the shape
of the distribution for the observations for the parent population), the sample av-
erage has a distribution that becomes more and more like the shape of a normal
distribution (i.e., symmetric and unimodal) as the sample size increases. Figure
7.4, taken from Kuzma (1998), shows how the distribution of the sample mean
changes as the sample size » increases from 1 to 2 to 5 and finally to 30 for a uni-
form distribution, a bimodal distribution, a skewed distribution, and a symmetric
distribution.

In all cases, by the time n = 30, the distribution in very symmetric and the vari-
ance continually decreases as we noticed for the home run data in the previous sec-
tion. So, the figure gives you an idea of how the convergence depends on both the
sample size n and the shape of the population distribution function.

What we see from the figure is remarkable. Regardless of the shape of the popu-
lation distribution, the sample averages will have a nearly symmetric distribution
approximating the normal distribution in shape as the sample size gets large! This is
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Figure 7.4. The effect of shape of population distribution and sample size on the distribution of means
of random samples. (Source: Kuzma, J. W. Basic Statistics for the Health Sciences. Mountain View,
California: Mayfield Publishing Company, 1984, Figure 7.3, p. 82.)
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a surprising result from probability that is called the central limit theorem. Let us
now state the results of the central limit theorem formally.

Suppose we have taken a random sample of size » from a population (generally,
n needs to be at least 25 for the approximation to be accurate, but sometimes larger
samples sizes are needed and occasionally, for symmetric populations, you can do
fine with only 5 to 10 samples). We assume the population has a mean w and a stan-
dard deviation o. We then can assert the following:

1. The distribution of sample means X is approximately a normal distribution
regardless of the population distribution. If the population distribution is nor-
mal, then the distribution for X is exactly normal.

2. The mean for the distribution of sample means is equal to the mean of the
population distribution (i.e., wy = w where uy denotes the mean of the distri-
bution of the sample means). This statement signifies that the sample mean is
an unbiased estimate of the population mean.

3. The standard deviation of the distribution of sample means is equal to the
standard deviation of the population divided by the square root of the sample
size [i.e., o3 = (0/n), where oy is the standard deviation of the distribution of
sample means based on n observations]. We call oy the standard error of the
mean.

Property 1 is actually the central limit theorem. Properties 2 and 3 hold for any sam-
ple size n when the population has a finite mean and variance.

7.3 STANDARD ERROR OF THE MEAN

The measure of variability of sample means, the standard deviation of the distribu-
tion of the sample mean, is called the standard error of the mean (s.e.m.). The s.e.m.
is to the distribution of the sample means what the standard deviation is to the pop-
ulation distribution. It has the nice property that it decreases in magnitude as the
sample size increases, showing that the sample mean becomes a better and better
approximation to the population mean as the sample size increases.

Because of the central limit theorem, we can use the normal distribution approx-
imation to assert that the population mean w will be within plus or minus two stan-
dard errors of the sample mean with a probability of approximately 95%. This is be-
cause slightly over 95% of a standard normal distribution lies between +2 and the
sampling distribution for the mean is centered at u with a standard deviation equal
to one standard error of the mean.

A proof of the central limit theorem is beyond the scope of the course. However,
the sampling experiment of Section 7.1 should be convincing to you. If you gener-
ate random samples of larger sizes on the computer using an assumed population
distribution, you should be able to generate histograms that will have the changing
shape illustrated in Figure 7.4 as you increase the sample size.
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Suppose we know the population standard deviation o. Then we can transform
the sample mean so that it has an approximate standard normal distribution, as we
will show you in the next section.

7.4 Z DISTRIBUTION OBTAINED WHEN STANDARD DEVIATION
IS KNOWN

Recall that if X has a normal distribution with mean w and standard deviation o, then
the transformation Z = (X — w)/o leads to a random variable Z with a standard normal
distribution. We can do the same for the sample mean X. Assume 7 is large so that the
sample mean has an approximate normal distribution. Now, let us pretend for the mo-
ment that the distribution of the sample mean is exactly normal. This is reasonable
since it is approximately so. Then define the standard or normal Z score as follows:

_X-p
= . (7.1

Then Z would have a standard normal distribution because X has a normal distribu-
tion with mean ux = w and standard deviation a/Vn.

Because in practice we rarely know o, we can approximate o by the sample esti-
mate,

VA

For large sample sizes, it is acceptable to use S in place of o; under these condi-
tions, the standard normal approximation still works. So we use the following for-
mula for the approximate Z score for large sample sizes:

_X-n

Z =
SINn

(7.2)

However, in small samples such as n < 20, even if the observations are normally
distributed, using Formula 7.2 does not give a good approximation to the normal
distribution. In a famous paper under the pen name Student, William S. Gosset
found the distribution for the statistic in Formula 7.2 and it is now called the Stu-
dent’s ¢ statistic; the distribution is called the Student’s ¢ distribution with n — 1 de-
grees of freedom. This is the subject of the next section.

7.5 STUDENT’S ¢t DISTRIBUTION OBTAINED WHEN STANDARD
DEVIATION IS UNKNOWN

The Guinness Brewery in Dublin employed an English chemist, William Sealy
Gosset, in the early 1900s. Gosset’s research involved methods for growing hops in
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order to improve the taste of beer. His experiments, which generally involved small
samples, used statistics to compare hops developed by different procedures.

In his experiments, Gosset used Z statistics similar to the ones we have seen thus
far (as in Formula 7.2). However, he found that the distribution of the Z statistic
tended to have more extreme negative and positive values than one would expect to
see from a standard normal distribution. This excess variation in the sampling dis-
tribution was due to the presence of s instead of o in the denominator. The variabil-
ity of s, which depended on the sample size n, needed to be accounted for in small
samples.

Eventually, Gosset was able to fit a Pearson distribution to observed values of
his standardized statistic. The Pearson distributions were a large family of distribu-
tions that could have symmetric or asymmetric shapes and have short or long tails.
They were developed by Karl Pearson and were known to Gosset and other re-
searchers. Instead of Z, we now use the notation ¢ for the statistic that Gosset devel-
oped. It turned out that Gosset had derived empirically the exact distribution for ¢
when the sample observations have exactly a normal distribution. His # distribution
provides the appropriate correction to Z in small samples where the normal distrib-
ution does not provide an accurate enough approximation to the distribution of the
sample mean because the effect of s on the statistic matters.

Ultimately, tables similar to those used for the standard normal distribution were
created for the ¢ distribution. Unfortunately, unlike the standard normal, the distrib-
ution of # changes as n changes (either increases or decreases).

Figure 7.5 shows how the shape of the 7 distribution changes as » increases.
Three distributions are plotted on the graph, the 7 with 2 degrees of freedom, the ¢
with 20 degrees of freedom, and the standard normal distribution. The term “de-
grees of freedom” for a ¢ distribution is a parameter denoted by “df” that is equal to
n — 1 where # is the sample size.

We can see from Figure 7.5 that the ¢ is symmetric about zero but is more spread
out than the standard normal distribution. Tables for the ¢ distribution as a function

Figure 7.5. Comparison of normal distribution with ¢ distributions of degrees of freedom (df) 4 and 2.
(Source: Adapted from Kuzma, J. W. Basic Statistics for the Health Sciences. Mountain View, Califor-
nia: Mayfield Publishing Company, 1984, Figure 7.4, p. 84.)
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of the percentile point of interest and the degrees of freedom are given in Appendix
F. Formula 7.3 presents the ¢ statistic.

t*)_(fM
- SAn

(7.3)

For n = 30, use the table of the ¢ distribution with n — 1 degrees of freedom. When
n > 30, there is very little difference between the standard normal distribution and
the ¢ distribution.

Let us illustrate the difference between Z and ¢ with a medical example. We con-
sider the blood glucose data from the Honolulu Heart Study (Kuzma, 1998, p. 93,
Figure 7.1). The population distribution in this example, a finite population of N =
7683 patients, was highly skewed. The population mean and standard deviation
were u = 161.52 and o = 58.15, respectively. Suppose we select a random sample
of 25 patients from this population; what proportion of the sample would fall below
164.5?

First, let us use Z with p and o as given above (assumed to be known). Then Z =
(164.5 — 161.52)/(58.15/\/25) = 2.98/11.63 = 0.2562. Looking in Appendix E at
the table for the standard normal distribution, we will use 0.26, since the table car-
ries only two decimal places: P(Z>0.26)=0.5-P(0 =Z=0.26)=0.5-0.1026 =
0.3974.

Suppose that (1) the mean w is known to be 161.52, (2) the standard deviation o
is unknown, and (3) we use our sample of 25 to estimate . Although the sample es-
timate is not likely to equal the population value of 58.15, let us assume (for the
sake of argument) that it does. When S = 58.15, r = 0.2562.

Now we must refer to Appendix E to determine the probability for a 7 with 24
degrees of freedom—P(¢ > 0.2562). As the table provides P(f =< a), in order to find
P(t > a) we use the relationship that P(t > a) = 1 — P(t =< a); in our case, a = 0.2562.
The table tells us that P(z = 0.2562) = 0.60. So P(t > 0.2562) = 0.40. Note that there
is not much difference between 0.40 for the ¢ and the value 0.3974 that we obtained
using the standard normal distribution. The reason for the similar results obtained
for the # and Z distributions is that the degrees of freedom (df = 24) are close to 30.

Let us assume that » = 9 and repeat the foregoing calculations, this time for the
probability of observing an average blood glucose level below 178.75. First, for Z
we have Z = (178.75-161.52)/(58.15/\/9) = 17.23/(58.15/3) = 17.23/19.383 =
0.889. Rounding 0.889 to two decimal places, P(Z < 0.89)=0.50 + P(0 < Z<0.89)
=0.50+0.3133 =0.8133.

If we assume correctly that the standard deviation is estimated from the sample,
we should apply the ¢ distribution with 8 degrees of freedom. The calculated ¢ statis-
tic is again 0.889. Referencing Appendix F, we see for a ¢ distribution with 8 de-
grees of freedom P(z < 0.889) = 0.80. The difference between the probabilities ob-
tained by the Z test and ¢ test (0.8133 — 0.8000) equals 0.0133, or 1.33%. We see
that because the ¢ (df = 8) has more area in the upper tail than does the Z distribu-
tion, the proportion of the distribution below 0.889 will be smaller than the propor-
tion we obtained for a standard normal distribution.
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7.6 ASSUMPTIONS REQUIRED FOR ¢ DISTRIBUTION
For the ¢ distribution to apply strictly we need the following two assumptions:

1. The observations are selected at random from the population.
2. The population distribution is normal.

Sometimes these assumptions may not be met (particularly the second one). The ¢
test is robust for departures from the normal distribution. That means that even
when assumption 2 is not satisfied because the population differs from the normal
distribution, the probabilities calculated from the 7 table are still approximately cor-
rect. This outcome is due to the central limit theorem, which implies that the sample
mean will still be approximately normal even if the observations themselves are
not.

7.7 EXERCISES

7.1  Define in your own words the following terms:
a. Central limit theorem
b. Standard error of the mean
d. Student’s ¢ statistic

7.2 Calculate the standard error of the mean for the following sample sizes (u =
100, o = 10). Describe how the standard error of the mean changes as # in-

creases.
a.n=4
b.n=9
c. n=16
d n=25
e. n=36

7.3  The average fasting cholesterol level of an entire community in Michigan is
=200 (o= 20). A sample (n = 25) is selected from this population. Based
on the information provided, sketch the sampling distribution of .

7.4  The population mean () blood levels of lead of children who live in a city is
11.93 with a standard deviation of 3. For a sample size of 9, what is the prob-
ability that a mean blood level will be:

a. Between 8.93 and 14.93
b. Below 7.53
c. Above 16.43

7.5 Repeat Exercise 7.4 with a sample size of 36.
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7.6

1.7

7.8

7.9

7.10

7.11

7.12

SAMPLING DISTRIBUTIONS FOR MEANS

Based on the findings obtained from Exercises 7.4 and 7.5, what general
statement can be made regarding the effect of sample size on the probabilities
for the sample means?

The average height of male physicians employed by a Veterans Affairs med-
ical center is 180.18 cm with a standard deviation of 4.75 cm. Find the proba-
bility of obtaining a mean height of 184.93 cm or greater for a sample size of:
a. 5

b. 10

c. 20

A health researcher collected blood samples from a population of female
medical students. The following cholesterol measurements were obtained:
=211, o= 44. If we select any student at random, what is the probability
that her cholesterol value (X) will be:

a. P(150 <X <250)

b. P(X < 140)

c. P(X>300)

What do you need to assume in order to solve this problem?

Using the data from Exercise 7.8, for a sample of 25 female students, calcu-
late the standard error of the mean, draw the sampling distribution about wu,
and find:

a. P(200 <X <220)

b. P(X<196)

c. P(X>224)

The following questions pertain to the central limit theorem:

a. Describe the three main consequences of the central limit theorem for the
relationship between a sampling distribution and a parent population.

b. What conditions must be met for the central limit theorem to apply?

c. Why is the central limit theorem so important to statistical inference?

Here are some questions about sampling distributions in comparison to the

parent populations from which samples are selected:

a. Describe the difference between the distribution of the observed sample
values from a population and the distribution of means calculated from
samples of size n.

b. What is the difference between the population standard deviation and the
standard error of the mean?

¢. When would you use the standard error of the mean?

d. When would you use the population standard deviation?

The following questions relate to comparisons between the standard normal
distribution and the ¢ distribution:
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a. What is the difference between the standard normal distribution (used to
determine Z scores) and the ¢ distribution?

b. When are the values for ¢ and Z almost identical?

c. Assume that a distribution of data is normally distributed. For a sample
size n =7, by using a sample mean, which distribution would you employ
(t or Z) to make an inference about a population?

7.13 Based on a sample of six cases, the mean incubation period for a gastroin-
testinal disease is 26.0 days with a standard deviation of 2.83 days. The pop-
ulation standard deviation (o) is unknown, but u = 28.0 days. Assume the
data are normally distributed and normalize the sample mean. What is the
probability that a sample mean would fall below 24 days based on this nor-
malized statistic + where the actual standard deviation is unknown and the
sample estimate must be used.

7.14 Assume that we have normally distributed data. From the standard normal
table, find the probability area bounded by +1 standard deviation units about
a population mean and by *1 standard errors about the mean for any distribu-
tion of sample means of a fixed size. How do the areas compare?
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CHAPTER 8

Estimating Population Means

[OJuantities which are called errors in one case, may really be
most important and interesting phenomena in another
investigation. When we speak of eliminating error we really

mean disentangling the complicated phenomena of nature.
—W. J. Jevons, The Principles of Science, Chapter 15, p. 339

8.1 ESTIMATION VERSUS HYPOTHESIS TESTING

In this section, we move from descriptive statistics to inferential statistics. In de-
scriptive statistics, we simply summarize information available in the data we are
given. In inferential statistics, we draw conclusions about a population based on a
sample and a known or assumed sampling distribution. Implicit in statistical infer-
ence is the assumption that the data were gathered as a random sample from a pop-
ulation.

Examples of the types of inferences that can be made are estimation, conclusions
from hypothesis tests, and predictions of future observations. In estimation, we are
interested in choosing the “best” estimate of a population parameter based on the
sample and statistical theory.

For example, as we saw in Chapter 7, when data are sampled from a normal dis-
tribution, the sample mean has a normal distribution that is on average equal to the
population mean with a variance equal to the population variance divided by the
sample size n. Recall that the distribution of a statistic such as a sample mean is
called a sampling distribution. The Gauss—Markov theory goes on to determine that
the sample mean is the best estimate of the population mean. That means that for a
sample of size n it gives us the most accurate answer (e.g., has properties such as
smallest mean square error and minimum variance among unbiased estimators).

The sample mean is a point estimate, but we know it has a sampling distribution.
Hence, the sample mean will not be exactly equal to the population mean. However,
the theory we have tells us about its sampling distribution; thus, statistical theory
can aid us in describing our uncertainty about the population mean based on our
knowledge of the sampling distribution for the sample mean.

In Section 8.2, we will further discuss point estimates and in Section 8.3 we will

150 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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discuss confidence intervals. Confidence intervals are merely interval estimates
(based on the observed data) of population parameters that express a range of val-
ues that are likely to contain the parameter. We will describe how the sampling dis-
tribution of the point estimate is used to get confidence intervals in Section 8.3.

In hypothesis testing, we construct a null and an alternative hypothesis. Usually,
the null hypothesis is an uninteresting hypothesis that we would like to reject. You
will see examples in Chapter 9. The alternative hypothesis is generally the interest-
ing scientific hypothesis that we would like to “prove.” However, we do not actual-
ly “prove” the alternative hypothesis; we merely reject the null hypothesis and re-
tain a degree of uncertainty about its status.

Due to statistical uncertainty, one can never absolutely prove a hypothesis based
on a sample. We will draw conclusions based on our sample data and associate an
error probability with our possible conclusion. When our conclusion favors the null
hypothesis, we prefer to say that we fail to reject the null hypothesis rather than that
we accept the null hypothesis.

In setting up the hypothesis test, we will determine a critical value in advance of
looking at the data. This critical value is selected to control the type I error (i.e., the
probability of falsely rejecting the null hypothesis). This is the so-called Ney-
man—Pearson formulation that we will describe in Section 9.2.

In Section 9.9, we will describe a relationship between confidence intervals and
hypothesis tests that enables one to construct a hypothesis test from a confidence in-
terval or a confidence interval from a hypothesis test. Usually, hypothesis tests are
constructed based directly on the sampling distribution of the point estimate. How-
ever, in Chapter 9 we will introduce the simplest form of bootstrap hypothesis test-
ing. This test is based on a bootstrap percentile method confidence interval that we
will introduce in Section 8.8.

8.2 POINT ESTIMATES

In Chapter 4, you learned about summary statistics. We discussed population para-
meters for central tendency (e.g., the mean, median and the mode) and for disper-
sion (e.g., the range, variance, mean absolute deviation, and standard deviation).
We also presented formulas for sample analogs based on data from random samples
taken from the population. These sample analogs are often also used as point esti-
mates of the population parameters. A point estimate is a single value that is chosen
as an estimate for a population parameter.

Often the estimates are obvious, such as with the use of the sample mean to esti-
mate the population mean. However, sometimes we can select from two or more
possible estimates. Then the question becomes which point estimate should you
use?

Statistical theory offers us properties to compare point estimates. One important
property is consistency. The property of consistency requires that as the sample size
becomes large, the estimate will tend to approximate more closely the population
parameter.
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For example, we saw that the sampling distribution of the sample mean was cen-
tered at the true population mean; its distribution approached the normal distribu-
tion as the sample size grew large. Also, its variance tended to decrease by a factor
of 1/\/n as the sample size n increased. The sampling distribution was concentrated
closer and closer to the population mean as » increased.

The facts stated in the foregoing paragraph are sufficient to demonstrate consis-
tency of the sample mean. Other point estimates, such as the sample standard devi-
ation, the sample variance, and the sample median, are also consistent estimates of
their respective population parameters.

In addition to consistency, another property of point estimates is unbiasedness.
This property requires the sample estimate to have a sampling distribution whose
mean is equal to the population parameter (regardless of the sample size 7). The
sample mean has this property and, therefore, is unbiased. The sample variance (the
estimate obtained by dividing by n — 1) is also unbiased, but the sample standard de-
viation is not.

To review:

EX = u (The sample mean is an unbiased estimate of the population mean.)

E(S?) = 02 where §2 =3, (X;— X)?/(n — 1) (The sample variance is an unbiased
estimate of the population variance.)

E(S) # o (The sample standard deviation is a biased estimate of the population
standard deviation.)

Similarly S/Vn is the usual estimate of the standard error of the mean, namely,
o/V'n. However, since E(S) # o it also follows that E(S/\n) # o/Vn. So our esti-
mate of the standard error of the mean is also biased. These results are summarized
in Display 8.1.

If we have several estimates that are unbiased, then the best estimate to choose is
the one with the smallest variance for its sampling distribution. That estimate would
be the most accurate. Biased estimates are not necessarily bad in all circumstances.
Sometimes, the bias is small and decreases as the sample size increases. This situa-
tion is the case for the sample standard deviation.

An estimate with a small bias and a small variance can be better than an estimate
with no bias (i.e., an unbiased estimate) that has a large variance. When comparing

Display 8.1. Bias Properties of Some Common Estimates

E(X) = u—The sample mean is an unbiased estimator of the population mean.

E(S?) = 0>—The sample variance is an unbiased estimator of the population
variance.

E(S) # o—The sample standard deviation is a biased estimator of the popula-
tion standard deviation.
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a biased estimator to an unbiased estimator, we should consider the accuracy that
can be measured by the mean-square error.

The mean-square error is defined as MSE = ? + o2, where B is the bias of the
estimator and o2 is the variance of the estimator. An unbiased estimator has MSE =
o2

Here we will show an example in which a biased estimator is better than an unbi-
ased estimator because the former has a smaller mean square error than the latter.
Suppose that 4 and B are two estimates of a population parameter. 4 is unbiased
and has MSE = o 3. We use the subscript 4 to denote that ¢ 7 is the variance for es-
timator A. B is a biased estimate and has MSE = 83 + o3. Here we use B as the sub-
script for the bias and B2 to denote the variance for estimator B. Now if B + o <
o7, then B is a better estimate of the population parameter than A. This situation
happens if 0} < 0% — B3. To illustrate this numerically, suppose 4 is an unbiased
estimator for a parameter 6 and 4 has a variance of 50. Now B is a biased estimate
of 6 with a bias of 4 and a variance of 25. Then 4 has a mean square error of 50 but
B has a mean square error of 16 + 25 =41. (B’s variance is 25 and the square of the
bias is 16.) Because 41 is less than 50, B is a better estimate of 6 (i.e., it has a lower
mean square error).

As another example, suppose 4 is an unbiased estimate for 6 with variance 36
and B is a biased estimate with variance 30 but bias 4. Which is the better estimate?
Surprisingly, it is A. Even though B has a smaller variance than 4, B tends to be far-
ther away from 6 than A. In this case, B is more precise but misses the target, where-
as A is a little less precise but is centered at the target. Numerically, the mean square
error for A4 is 36 and for B it is 30 + (4)> =30 + 16 = 46. Here, a biased estimate with
a lower variance than an unbiased estimate was less accurate than the unbiased esti-
mator because it had a higher mean square error. So we need the mean square error
and not just the variance to determine the better estimate when comparing unbiased
and biased estimates. (See Figure 8.1.)

In conclusion, precise estimates with large bias are never desirable, but precise
estimates with small bias can be good. Unbiased estimates that are precise are good,
but imprecise unbiased estimates are bad. The trade-off between accuracy and pre-
cision is well expressed in one quantity: the mean square error.

8.3 CONFIDENCE INTERVALS

Point estimates can be used to obtain our best determination of a single value that
operates as a parameter. However, point estimates by themselves do not express the
uncertainty in the estimate (i.e., the variability in its sampling distribution). Howev-
er, under certain statistical assumptions the sampling distribution of the estimate
can be determined (e.g., for the sample mean when the population distribution is
normal with known variance). In other circumstances, the sampling distribution can
be approximated (e.g., for the sample mean under the assumptions needed for the
central limit theorem to hold along with the standard deviation estimated from a
sample). This information enables us to quantify the uncertainty in a confidence in-






8.4 CONFIDENCE INTERVALS FOR A SINGLE POPULATION MEAN 155

terval. Confidence intervals express the probability that a prescribed interval will
contain the true parameter.

8.4 CONFIDENCE INTERVALS FOR A SINGLE POPULATION MEAN

To understand how confidence intervals work, we will first illustrate them by the
simplest case, in which the observations have a normal distribution with a known
variance o2 and we want to estimate the population mean, p. Then we know that
the sample mean is X and its sampling distribution has mean equal to the population
mean u and a variance o?/n, where n is the number of samples. Thus, Z =
(X — w)/(0/\/n) has a standard normal distribution. We can therefore state that
P(-1.96 = Z = 1.96) = 0.95 based on the standard normal distribution. Substituting
(X — w)/(0/V/n) for Z we obtain P(—1.96 = (X — w)/(0/Vn) = 1.96) = 0.95 or
P(-1.960/n = (X — p) = 1.960/V/n) = 0.95 or P(-1.96(c/\Vn) — X = — p <
1.96(0/V/n) — X) = 0.95. Multiplying throughout by —1 and reversing the inequality,
we find that P(1.96(0/Vn) + X = u = —1.96(a/\V/n) + X) = 0.95. Rearranging the
foregoing formula, we have P(X — 1.960/n = u =< X + 1.960/\/n) = 0.95. The
confidence interval is an interpretation of this probability statement. The confidence
interval [X — 1.960/\/n, X + 1.960/\/n] is a random interval determined by the
sample value of X, o, n, and the confidence level (e.g., 95%). X is the component to
this interval that makes it random. (See Display 8.2.)

The probability statement P[X — 1.96(0/Vn) = u = X + 1.96(o/Vn)] = 0.95
says only that the probability that this random interval includes the population mean
is 0.95. This probability pertains to the procedure for generating random confidence
intervals. It does not say what will happen to the parameter on any particular out-
come. If, for example, o is 5 and n = 25 and we obtain from a sample a sample
mean of 5.96, then the outcome for the random interval is [5.96 — 1.96, 5.96 + 1.96]
= [4.00, 7.92]. The population mean will either be inside or outside the interval. If
the mean w = 7, then it is contained in the interval. On the other hand, if uw =8, w is
not contained in the interval.

We cannot say that the probability is 0.95 that the single fixed interval [4.00,
7.92] contains . It either does or it does not. Instead, we say that we have 95%
confidence that such an interval would include (or cover) u. This means that the
process will tend to include the true value of the parameter 95% of the time if we

Display 8.2. A 95% Confidence Interval for a Population
Mean . When the Population Variance o® is Known

The confidence interval is formed by the following equation:

[X-1.960/\/n, X + 1.960/\/n]

where 7 is the sample size.
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were to repeat the process many times. That is to say, if we generated 100 samples
of size 25 and for each sample we generated the confidence interval as described
above, approximately 95 of the intervals would include w and the remaining ones
would not. (See Figure 8.2.)

Why did we choose 95%? There is no strong reason. The probability 0.95 is high
and indicates we have high confidence that the interval will include the true para-
meter. However, in some situations we may feel comfortable only with a higher
confidence level such as 99%. Let “C” denote the Z value associated with a particu-
lar level of confidence that corresponds to a particular section of the normal curve.
To obtain a 99% confidence interval, we just go to the table of the standard normal
distribution to find the value C such that P(-C = Z = C) = 0.99. We find that C =
2.576. This leads to the interval [X — 2.5760/\/n, X + 2.5760/\/n]. In the example
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95% Confidence Intervals for p

Figure 8.2. The results of a computer simulation of 20 samples of size » = 1000. We assumed that the
true value of p = 0.5. At the top is the sampling distribution of p [normal, with mean p and o =
Vp(1 — p)/n]. Below are the 95% confidence intervals from each sample. On average, one out of 20 (or
5%) of these intervals will not cover the point p = 0.5.
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above where the sample mean is 5.96, o is 5, and n = 25, the resulting interval
would be [5.96 — 2.576(5)/\V/25, 5.96 + 2.576(5)/\/25] = [3.384, 8.536]. Compare
this to the 95% interval [4.00, 7.92].

Notice that for the same standard deviation and sample size, increasing the con-
fidence level increases the length of the interval and also increases the chance that
such intervals generated by this prescription would contain the parameter w. Note
that in this case, if u = 8, the 95% interval would not have contained w but the 99%
interval would. This example could have been one of the 5% of cases where a 95%
confidence interval does not contain the mean but the 99% interval does. The 99%
interval has to be wider because it has to capture the true mean in 4/5ths of the cases
where the 99% confidence interval does not. That is why the 95% interval is con-
tained within the 99% interval.

We pay a price for the higher confidence in a much wider interval. For example,
by establishing an extremely wide confidence interval, we are increasingly certain
that it contains . Thus, for example, we could say with extremely high confidence
that the confidence interval for the mean age of the U.S. population is between 0
and 120 years. However, this interval would not be helpful, as we would like to
have a more precise estimate of w.

If we were willing to accept a lower confidence level such as 90%, we would ob-
tain a value of 1.645 for C, where P(-C = Z = C) = 0.90. In that case, for the ex-
ample we are considering the interval would be [5.96 — 1.645, 5.96 + 1.645] =
[4.315, 7.505]. This is a much tighter interval that is contained within the 95% in-
terval. Here we gain a tighter interval at the price of lower confidence.

Another important point to note is the gain in precision of the estimate with in-
crease in sample size. This point can be illustrated by the narrowing of the width of
the confidence interval. Let us consider the 95% confidence interval for the mean
that we obtained with a sample of size 25 and an estimated mean of 5.96. Suppose
we increase the sample size to 100 (a factor of 4 increase) and assume that we still
get a sample mean of 5.96. The 95% interval (assuming the population standard de-
viation is known to be 5) is then [5.96 — 1.96 (5/V'100), 5.96 + 1.96 (5/Vv100)] =
[5.96 —0.98, 5.96 + 0.98] = [4.98, 6.94].

This interval is much narrower and is contained inside the previous one. The in-
terval width is 6.94 — 4.98 = 1.96 as compared to 7.92 —4.00 = 3.92. Notice this in-
terval is exactly half the width of the other interval. That is, if the confidence level
is left unchanged and the sample size # is increased by a factor of 4, V7 is in-
creased by a factor of 2; because the interval width is 2(1.96)/\/n, the interval
width is reduced by a factor of 2. Exhibit 8.1 summarizes the critical values of the
standard normal distribution for calculating confidence intervals at various levels of
confidence.

If the population standard deviation is unknown and we want to estimate the
mean, we must use the ¢ distribution instead of the normal distribution. So we cal-
culate the sample standard deviation S and construct the 7 score (X — w)/(S/\/n).
Recall that this quantity has Student’s ¢ distribution with n — 1 degrees of freedom.
Note that this distribution does not depend on the unknown parameters u and o,
but it does depend on the sample size n through the degrees of freedom. This dif-
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Exhibit 8.1. Two-Sided Critical Values of the
Standard Normal Distribution

For standard normal distributions, we have the following critical points for two-
sided confidence intervals:

COA90 =1.645 C0A95 =1.960 C0A99 =2.576

fers from the standard normal distribution that does not depend on the sample size
n.

For a 95% confidence interval, we need to determine C so that P(-C =t = C) =
0.95. For n = 25, again assume that the sample mean is 5.96, the sample standard
deviation is 5, and n» = 25. Then the degrees of freedom are 24, and from the table
for the ¢ distribution we see that C = 2.064. The statement P(-C = ¢t = C) =0.95 is
equivalent to P[X — C(S/\Vn) = uw = X + C(S/\Vn)] = 0.95. So the interval is [X —
C(SINn), X + C(S/\V/n)]. Using C = 2.064, S = 5, n = 25, and a sample mean of
5.96, we find [5.96 — 2.064, 5.96 + 2.064] or [3.896, 8.024]. Display 8.3 summa-
rizes the procedure for calculating a 95% confidence interval for a population mean
when the population variance is unknown.

You should note that the interval is wider than in the case in which we knew the
variance and used the normal distribution. This result occurs because there is extra
variability in the 7 statistic due to the fact that the random quantity s is used in place
of a fixed quantity . Remember that the 7 with 24 degrees of freedom has heavier
tails than the standard normal distribution; this fact is reflected in the quantity C =
2.064 in place of C = 1.96 for the standard normal distribution.

Suppose we obtained the same estimates for the sample mean X and the sample
standard deviation S but the sample size was increased to 100; the interval width
again would decrease by a factor of 2, because the width of the interval is 2C(S/\/n)
and only # is changing.

Display 8.3. A 95% Confidence Interval for a Population
Mean p When the Population Variance is Unknown

The confidence interval is given by the formula

IR NG

where 7 is the sample size, C is the 97.5 percentile of Student’s ¢ distribution
with n — 1 degrees of freedom, and s is the sample standard deviation.
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8.5 Z AND ¢ STATISTICS FOR TWO INDEPENDENT SAMPLES

Now consider a situation in which we compare the difference between means of
samples selected from two populations. In a clinical trial, we could be comparing
the mean of a variable (commonly referred to as an endpoint) for a control group to
the corresponding mean for a treatment group.

First assume that both groups have normally distributed observations with
known and possibly different variances o, and o, for the treatment and control
groups, respectively. Assume that the sample size for the treatment group is n, and
for the control group is n,.. Also assume that the means are w, and . for the treat-
ment and control groups, respectively.

Let us select two samples independently from the two groups (treatment and con-
trol) and compute the means of the samples. We denote the means of the samples
from the control and treatment groups, X, and X, respectively. The difference be-
tween the sample means X, — X, comes from a normal distribution with mean u, — .,
variance (o/n,) + (0%/n,), and standard error for X, — X, equal to V/(o%/n,) + (0¥/n,).
The Z transformation of X, — X, is defined as

_ ()_(1‘ _)_(c) - (/‘Lt - /‘Lc)

2 2
()
n,  n.

which has a standard normal distribution. Here is an interesting statistical observa-
tion: Even though we are finding the difference between two sample means, the
variance of the distribution of their differences is equal to the sum of the two
squared standard errors associated with each of the individual sample means. The
standard errors of the treatment and control groups are calculated by dividing the
population variance of each group by the respective sample size of each indepen-
dently selected sample.

As demonstrated in Section 8.6, the Z transformation, which employs the addi-
tion of the error variances of the two means, enables us to obtain confidence inter-
vals for the difference between the means. In the special case where we can assume
that o2 = 02 = 02, the Z formula reduces to

Z

_ (X _yc) - (:U/r - M’c)
aV(1/n)+ (1/n,)

The term o2 is referred to as the common variance. Since P{[-1.96 = Z < 1.96] =
0.95, we find after algebraic manipulation that [(X,—X.)— 1.96{aV{(1/n)+ (1/n.)},
(X, — X))} +1.96{0N{(1/n,) + (1/n,)} }] is a 95% confidence interval for w, — u,.

In practice, the population variances of the treatment and control groups are un-
known; if the two variances can be assumed to be equal, we can calculate an esti-
mate of the common variance o2, called the pooled estimate. Let S? and S2 be the
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sample estimates of the variance for the treatment and control groups, respectively.
The pooled variance estimate S? is then given by the formula

Sin,— D)+ S«n.—1)

§2=
? [nt—"—nc*z]

The corresponding ¢ statistic is

_ ()_(t 7)_(0) B (/J'r B :u“c)
SN (/n) + (Un,)

This formula is obtained by replacing the common ¢ in the formula above for Z
with the pooled estimate S,. The resulting statistic has Student’s ¢ distribution with
n, + n, — 2 degrees of freedom. We will use this formula in Section 8.7 to obtain a
confidence interval for the mean difference based on this ¢ statistic when the popu-
lation variances can be assumed to be equal.

Although not covered in this text, the hypothesis of equal variances can be tested
by an F test similar to the F tests that are used in the analysis of variance (discussed
in Chapter 13). If the F test indicates that the variances are different, then one
should use a statistic based on the assumption of unequal variances.

This problem with unequal and unknown variances is called the Behrens—Fisher
problem. Let “4” denote the test statistic that is commonly used in the Behrens—
Fisher problem. The test statistic £ does not have a ¢ distribution, but it can be ap-
proximated by a ¢ distribution with a degrees of freedom parameter that is not nec-
essarily an integer. The statistic & is obtained by replacing the Z statistic in the un-
equal variance case as given below:

_ ()_(t _j(c) - (/"Lt - /"Lc)
~ N(an) + (a2n,)

with

_ (‘Yt _yc) - (M’t B Mc)
V(S3n,) + (S2/n,)

k

where §2 and S2 are the sample estimates of variance for the treatment and control
groups, respectively.

We use a ¢ distribution with v degrees of freedom to approximate the distribution
of k. The degrees of freedom v are

B ((S2/n) + (S2n )}
U e = DXS2n)? + [1(n,— DISn,)?

This is the formula we use for confidence intervals in Section 8.7 when the vari-
ances are assumed to be unequal and also for hypothesis testing under the same as-
sumptions (not covered in the text).
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8.6 CONFIDENCE INTERVALS FOR THE DIFFERENCE BETWEEN
MEANS FROM TWO INDEPENDENT SAMPLES (VARIANCES KNOWN)

When the population variances are known, we use the Z statistic defined in the pre-
vious section, namely

_ (X‘ ) (lu’t c
V(ai/n)+ (o2n,)

Z has exactly a standard normal distribution when the observations in both samples
are normally distributed. Also, based on the central limit theorem, Z is approximate-
ly normal if conditions for the central limit theorem are satisfied for each popula-
tion being sampled. For a 95% confidence interval we know that P(-C =Z = C) =
0.95if C=1.96. So P(-1.96 = {(X X) (e — )}V (a2n,) + (02/n,) < 1.96).
After some algebra we find that P[(X, — X.) — 1.96V (a7/n,) + (02/n.) = (4, — p,) =
X, -X)+ 1. 96V (a7/n,) A + (a2/n.)]. The 95% confidence interval is [(X, — X.) —
196V (a7/n,) + (a2/n,), (X, — X,) + 1.96V (a7/n,) + + (02/n,)). If 02 = 02 = ¢, then
the formula for the interval reduces to [(X, — X,) — 1.96 o/ (1/n,) + (1/n,), (X X))
+1.96 o/ (1/n,) + (1/n,)]. If, in addition, n = n, = n,, then the formula becomes
[(X, - X,) — 1.96 oV (2/n), (X, — X.) + 1.96 o"\/(2/n)]. For other confidence levels,
we just change the constant C to 1.645 for 90% or 2.575 for 99%. Display 8.4 pro-
vides the formula for the 95% confidence interval for the difference between two
population means, assuming common known population variance.

8.7 CONFIDENCE INTERVALS FOR THE DIFFERENCE
BETWEEN MEANS FROM TWO INDEPENDENT SAMPLES
(POPULATION VARIANCE UNKNOWN)

In the case when the variances of the parent populations from which the samples are
selected are unknown, we use the ¢ statistic with the pooled variance formula from
Section 8.5 assuming normal distributions and equal variances. When the variances
are assumed to be unequal and the distributions normal, we use the £ statistic from
Section 8.5 with the individual sample variances. When using k, we apply the
Welch—Aspin ¢ approximation with v degrees of freedom where v is defined as in
Section 8.5.

In the first case the 95% confidence interval is [(X, — X,) — CS,V(1/n,) + + (1/n,),
(X, —X.)+ CS,V(1/n,) + (1/n.)], where S,, is the pooled estimate of the standard de-
viation and C is the appropriate constant such that P(-C = ¢t = C) = 0.95 when ¢ has
a Student’s ¢ distribution with n, + n, — 2 degrees of freedom. The formula for the
95% confidence interval for the difference between two population means assum-
ing unknown and common population variances is given in Display 8.5.

Now recall that S2 = {S7(n, — 1) + S2(n. — 1)/[n, + n.— 2]}; S = {(115)*(8) +
(125)%(15)}/(9 + 16-2) = {13225(8) + 15625 (15)}/23 = {105800 + 2343750/23} =
340175/23 = 14790.22. S, is the square root of 14790.22 = 121.62. So the interval is
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Display 8.4. 95% Confidence Interval For the Difference Between
Two Population Means (Common Population Variance Known)

[(X,— X.)— 1.960V (1/n,) + (1/n,), (X, — X,) + 1.960°V (1/n,) + (1/n,)]

where:

n, is the sample size for the treatment group

n. is the sample size for the control group

o is the common variance for the two populations

Example:
X, X,
311.9 212.4
n; ne
9 16

o = 120 for both populations.

1
311.9 - 212.4 = 1.96(120) /3 + <5 =99.54 196(120)VO.TTT +0.0623

=99.5 + 1.96(120)\/0.1736
=99.5 + 1.96(120)(0.4167)

99.5 +£1.96(50.00): limits 1.5 <> 197.5

as follows: [(X, — X,) — C{S,V(/n)+ +(1n)}. (X, - X,) + C{S,V(/n)+ (1/n)}] =
[99.5 — C{121.62V(1/9) + (1/16)}, 99.5 + C{121.62V (1/9) + (1/16)}]. From the ¢
table we see that C = 2.0687 since the degrees of freedom are 23. Using this value
for C we get the following:

[99.5-2.0687{121.62V/(1/9) + (1/16)}, 99.5 + 2.0687{121.62V/(1/9) + (1/16)}]
=1[99.5-249.53(0.1736, 99.5 + 249.53(0.1736] =
=1[99.5-249.53(0.4167), 99.5 + 249.53(0.4167)] =
=1[99.5-103.98, 99.5 + 103.98] = [4.48, 203.48]

In the second case, the 95% confidence interval is [(X, — X,) — CV/ (8¥/n,) + (S%/n,),
(X, — X.) + CV/(S?%/n,) + (S%/n,)], where S? is the sample estimate of variance for the
treatment group and S? is the sample estimate of variance for the control group. The
quantity C is calculated such that P(—C = k = C) = 0.95 when £ has Student’s ¢ dis-
tribution with v degrees of freedom. Refer to Display 8.6 for the formula for a 95%
confidence interval for a difference between two population means, assuming differ-
ent unknown population variances.
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Display 8.5. 95% Confidence Interval For the Difference Between
Two Population Means (Common Population Variance Unknown)

[(X, — Xo) = C{S,V (Uny) + (Uno)}, (X, = Xo) + CLS,V (Uny) + (1/n,)}]

where:

n, is the sample size for the treatment group

n, is the sample size for the control group

C is the 97.5 percentile of the ¢ distribution with #n, + n. — 2 degrees of freedom
S, is the pooled estimate of the common variance for the two populations

Example:
X X,
311.9 212.4
ny ne
9 16
Sy Se
115 125

Let us consider an example from the pharmaceutical industry. A company is in-
terested in marketing a clotting agent that reduces blood loss when an accident
causes an internal injury such as liver trauma. To study possible doses of the agent
and obtain some indication of safety and efficacy, the company conducts an experi-
ment in which a controlled liver injury is induced in pigs and blood loss is mea-
sured. Pigs are randomized as to whether they receive the drug after the injury or do
not receive drug therapy—the treatment and control groups, respectively.

The following data were taken from a study in which there were 10 pigs in the
treatment group and 10 in the control group. The blood loss was measured in milli-
liters and is given in Table 8.1.

When the variances are known, we use the Z statistic defined in the previous sec-
tion, namely

(X, —Xo) — (s — o)}
V(ailn)+(ain.)

Z has exactly the standard normal distribution when the observations in both sam-
ples are normally distributed. Also, based on the central limit theorem, Z is approx-
imately normal if conditions for the central limit theorem are satisfied for each pop-
ulation being sampled. So for a 95% confidence interval we know that P(—C = Z =
C)=0.95if C=1.96. So P(-1.96 = {(X, - X.) — (1, — m)}/ N (a¥n) + (02/n,) =
1.96). After some algebra we find that P[(X, — X,) — 1.96\/(0%/n,) + (0%/n,) =
(w, — ) = (X, — X,) + 1.96\V/(02/n,) + (62/n_)]. So the 95% confidence interval is
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TABLE 8.1. Pig Blood Loss Data (ml)

Control Group Pigs Treatment Group Pigs
786 543
375 666
4446 455
2886 823
478 1716
587 797
434 2828
4764 1251
3281 702
3837 1078
Sample mean = 2187.40 Sample mean = 1085.90

Sample standard deviation = 1824.27 Sample standard deviation = 717.12

[(X, - X.) — 1.96\/ (0%/n,) + (0%n,), (X, — X,) + 1.96V (o7/n) + (o)) If 0 = o7
= o2, then the formula for the interval reduces to [(X,—X,)—1.96 o/(1/n,) + (1/n,),
(X, — X))+ 1.96 o\/(1/n,) + (1/n,)]. If, in addition, n = n, = n,, then the formula be-
comes [(X, - X.) — 1.96 o(2/n), (X,— X,) + 1.96 o"\/(2/n)]. For ‘other confidence lev-
els we just change the constant C to 1.645 for 90% or 2.575 for 99%.

For these data, we note a large difference between the sample standard devia-
tions: 717.12 for the treatment group versus 1824.27 for the control group. This re-
sult is not compatible with the assumption of equal variance. We will make the as-
sumption anyway to illustrate the calculation. We will then revisit this example and
calculate the confidence interval obtained, dropping the equal variance assumption
and using the # approximation with the £ statistic. In Section 8.9, we will look at the
result we would obtain from a bootstrap percentile method confidence interval
where the questionable normality assumption can be dropped. In Chapter 9, we will
look at the conclusions of various hypothesis tests based on these pig blood loss
data and various assumptions about the population variances. We will revisit the ex-
ample one more time in Section 14.3, where we will apply a nonparametric tech-
nique called the Wilcoxon rank—sum test to these data.

Using the formula for the estimated common variance (Display 8.5), we must
calculate the pooled variance S 2. The term S2 = {S%(n,— 1) + S2(n.— 1)}/[n, + n.—
2] = {(717.12)* 9 + (1824.27)* 9}/18, where n, = n. = 10, S, = 717.12, and S, =
1824.27. So S; = 2178241.61; taking the square root we obtain S, = 1475.89. Since
the degrees of freedom are n, + n, — 2 = 18, we find that the constant C from the
table of the Student’s ¢ distribution is 2.101. The interval is then [(X, — X,) —
s,V (1/n) + (1/n,), X, - X))+ CS,N(1/n,) + (1/n.)] = [(1085.9 — 2187.4) — 2.101
(1475.89)V0.1, (1085.9 — 2187.4) + 2.101 (1475.¢ 89)V0.1] = [-1101.5 — 980.57,
—1101.5 + 980.57] = [-2082.07, —120.93], since X, = 1085.9 and X, = 2187.4. In
Chapter 9 (on hypothesis testing), you will learn that because the interval does not
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contain 0, you are able to reject the hypothesis of no difference in average blood
loss.

We note that if we had chosen a 90% confidence interval C = 1.7341 (based on
the tables for Student’s ¢ distribution), the resulting interval would be [(1085.9 —
2187.4) — 1.7341(1475.89)V0.1, (1085.9 — 2187.4) + 1.7341(1475.89)V0.1] =
[-1101.5 —809.33,-1101.5 + 809.33] =[-1910.83, -292.17].

Now let us look at the result obtained from assuming unequal variances, a more
realistic assumption (refer to Display 8.6). The confidence interval would then be
[(X, — X.) — CV(S%n) + (S%n,), (X, — X,) + C\V/(8%/n,) + (S%/n,)], where C is ob-
tained from a Student’s ¢ distribution with v degrees of freedom and

{(8%/n) + (S2/n)}?
[V = DI(SZn)? + [1/(n,— D](SHn,)?

Using S, = 717.12 and S, = 1824.27, we obtain »= 11.717. Note that we cannot
look up C in the 7 table since the degrees of freedom (v) are not an integer. Interpo-
lation of results for 11 and 12 degrees of freedom (a linear approximation for de-
grees of freedom between 11 and 12) could be used as an approximation to C. It can
also be calculated numerically. For 11 degrees of freedom C = 2.201. For 12 de-
grees of freedom C = 2.1788. The interpolation formula is as follows:

(12-11.717) (21788 —x)
(12-11)  (2.1788-2.201)

We solve for x as the interpolated value for C. The simple way to remember the
change in degrees of freedom from 12 to 11.717 is to define the change in degrees
of freedom from 12 to 11 as the change in C from the value for 12 degrees of free-

Display 8.6. A 95% Confidence Interval for a Difference Between
two Population Means (Different Unknown Population Variances)

[(X, = X) = CV(STn,) + (SZne), (X, = Xo) + CV(STn,) + (S2n,)]

where:

n, is the sample size for the treatment group

S? is the sample estimate of variance for the treatment group

n. is the sample size for the control group

S? is the sample estimate of variance for the control group

C is the 97.5 percentile of the ¢ distribution with v degrees of freedom with »
given by

_ {(8%/n) +(S2/n)}?
" e~ D)SHn. + [, — DY(SHn,)?
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dom to the interpolated value of the change in C from 12 degrees of freedom to 11
degrees of freedom. So 0.283/1 = (2.1788 — x)/—0.0222 or —0.283(0.0222) = 2.1788
—xorx=2.1788 +0.283(0.0222) =2.1788 + 0.0063 = 2.1851.

So taking C = 2.185, the 95% confidence interval is [(1085.9 — 2187.4) —
2.185V/332796.1, (1085.9 — 2187.4) + 2.185V332796.1] = [-1101.5 — 1260.49,
—1101.5 + 1260.49] = [-2361.99, 158.99].

We note that this interval is different from the previous calculation for the com-
mon variance estimate and perhaps more realistic. The conclusion is also qualita-
tively different from the previous calculation because in this case the interval con-
tains 0, whereas under the equal variance assumption it did not!

8.8 BOOTSTRAP PRINCIPLE

In Chapter 2, we introduced the concept of bootstrap sampling and told you that it
was a nonparametric technique for statistical inference. We also explained the
mechanism for generating bootstrap samples and showed how that mechanism is
similar to the one used for simple random sampling. In this section, we will de-
scribe and use the bootstrap principle to show a simple and straightforward method
to generate confidence intervals for population parameters based on the bootstrap
samples. Reviewing Chapter 2, the difference between bootstrap sampling and sim-
ple random sampling is

1. Instead of sampling from a population, a bootstrap sample is generated by
sampling from a sample.

2. The sampling is done with replacement instead of without replacement.

Bootstrap sampling behaves similarly to random sampling in that each bootstrap
sample is a sample of size » drawn at random from the empirical distribution F,, a
probability distribution that gives equal weight to each observed data point (i.e.,
with each draw, each observation has the same chance as any other observation of
being the one selected). Similarly, random sampling can be viewed as drawing a
sample of size n but from a population distribution F' (in which F' is an unknown
distribution). We are interested in parameters of the distribution that help character-
ize the population. In this chapter, we are considering the population mean as the
parameter that we would like to know more about.

The bootstrap principle is very simple. We want to draw an inference about the
population mean through the sample mean. If we do not make parametric assump-
tions (such as assuming the observations have a normal distribution) about the sam-
pling distribution of the estimate, we cannot specify the sampling distribution for
inference (except approximately through the central limit theorem when the esti-
mate is a sample mean).

In constructing confidence intervals, we have considered probability statements
about quantities such as Z or ¢ that have the form (X — w)/o5 or (X — w)/S5, where o5
is the standard deviation or Sy is the estimated standard deviation for the sampling
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distribution (standard error) of the estimated .X. The bootstrap principle attempts to
mimic this process of constructing quantities such as Z and ¢ and forming confi-
dence intervals. The sample estimate X is replaced by its bootstrap analog X*, the
mean of a bootstrap sample. The parameter u is replaced by X.

Since the parameter w is unknown, we cannot actually calculate X — u, but
from a bootstrap sample we can calculate X* — X. We then approximate the dis-
tribution of X* — X by generating many bootstrap samples and computing many
X* values. By making the number B of bootstrap replications large, we allow the
random generation of bootstrap samples (sometimes called the Monte Carlo
method) to approximate as closely as we want the bootstrap distribution of X* —
X. The histogram of bootstrap samples provides a replacement for the sampling
distribution of the Z or ¢ statistic used in confidence interval calculations. The his-
togram also replaces the normal or ¢ distribution tables that we used in the para-
metric approaches.

The idea behind the bootstrap is to approximate the distribution of X — . If this
mimicking process achieves that approximation, then we are able to draw infer-
ences about u. We have no particular reason to believe that the mimicking process
actually works.

The bootstrap statistical theory, developed since 1980, shows that under very
general conditions, mimicking works as the sample size n becomes large. Other em-
pirical evidence from simulation studies has shown that mimicking sometimes
works well even with small to moderate sample sizes (10—100). The procedure has
been modified and generalized to work for a wide variety of statistical estimation
problems.

The bootstrap principle is easy to remember and to apply in general. You mimic
the sampling from the population by sampling from the empirical distribution.
Wherever the unknown parameters appear in your estimation formulae, you replace
them by their estimates from the original sample. Wherever the estimates appear in
the formulae, you replace them with their bootstrap estimates. The sample estimates
and bootstrap estimates can be thought of as actors. The sample estimates take on
the role of the parameters and the bootstrap estimates play the role of the sample es-
timates.

8.9 BOOTSTRAP PERCENTILE METHOD CONFIDENCE INTERVALS

Now that you have learned the bootstrap principle, it is relatively simple to gen-
erate percentile method confidence intervals for the mean. The advantages of the
bootstrap confidence interval are that (1) it does not rely on any parametric distri-
butional assumptions; (2) there is no reliance on a central limit theorem; and (3)
there are no complicated formulas to memorize. All you need to know is the boot-
strap principle. Suppose we have a random sample of size 10. Consider the pig
blood loss data (treatment group) shown in Table 8.2, which reproduces the treat-
ment data from Table 8.1.
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TABLE 8.2. Pig Blood Loss Data (ml)

Pig Index Treatment Group Pigs

543
666
455
823
1716
797
2828
1251
702
1078
Sample mean = 1085.90
Sample Standard deviation = 717.12

SO O 0NN AW~
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Let us use the method in Section 8.4 based on the ¢ statistic to generate a para-
metric 95% confidence interval for the mean. Then we will show you how to gener-
ate a bootstrap percentile method confidence interval based on just 20 bootstrap
samples. We will then show you a better approximation based on 10,000 bootstrap
samples. The result based on 10,000 bootstrap samples requires intensive comput-
ing, which we do using the software package Resampling Stats.

Recall that the parametric confidence interval based on 7 is [X — C(S/\Vn), X +
C(S/\/n)], where S is the sample standard deviation, X is the sample mean, and C is
the constant taken from the ¢ distribution with n — 1 degrees of freedom, where » is
the sample size and C satisfies the relationship P(—C = ¢ = C) = 0.95. In this case, n
=10and df=n—1=9. From the table of Student’s # we see that C =2.2622.

Now, in our example, X =1085.90 ml and s = 717.12 ml. So the confidence in-
terval is [1085.9 —2.2622(717.12/\/10, 1085.9 + 2.2622(717.12/\/10] = [1085.9 —
513.01, 1085.9 + 513.01] = [572.89, 1598.91]. Similarly, for a 90% interval the val-
ue for C is 1.8331; hence, the 90% interval is [1085.9 — 415.7, 1085.9 + 415.7] =
[670.2, 1501.6].

Now let us generate 20 bootstrap samples of size 10 and calculate the mean of
each bootstrap sample. We first list the samples based on their pig index and then
we will compute the bootstrap sample values and estimates. To generate 20 boot-
strap samples of size 10 we need 200 uniform random numbers. The following 10 x
20 table (Table 8.3) provides the 200 uniform random numbers. Each row repre-
sents a bootstrap sample. The pig indices are obtained as follows:

If the uniform random number U is in [0.0, 0.1), the pig index 7 is 1.
If the uniform random number U is in [0.1, 0.2), the pig index [ is 2.
If the uniform random number U is in [0.2, 0.3), the pig index [ is 3.
If the uniform random number U is in [0.3, 0.4), the pig index [ is 4.
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TABLE 8.3. Bootstrap Sample Uniform Random Numbers

0.00858 0.04352 0.17833 0.41105 0.46569 0.90109 0.14713 0.15905 0.84555 0.92326
0.69158 0.38683 0.41374 0.17028 0.09304 0.10834 0.61546 0.33503 0.84277 0.44800
0.00439 0.81846 0.45446 0.93971 0.84217 0.74968 0.62758 0.49813 0.13666 0.12981
0.29676 0.37909 0.95673 0.66757 0.72420 0.40567 0.81119 0.87494 0.85471 0.81520
0.69386 0.71708 0.88608 0.67251 0.22512 0.00169 0.58624 0.04059 0.05557 0.73345
0.68381 0.61725 0.49122 0.75836 0.15368 0.52551 0.54604 0.61136 0.51996 0.19921
0.19618 0.87653 0.18682 0.22917 0.56801 0.81679 0.93285 0.68284 0.11203 0.47990
0.16264 0.39564 0.37178 0.61382 0.51274 0.89407 0.11283 0.77207 0.90547 0.50981
0.40431 0.28106 0.28655 0.84536 0.71208 0.47599 0.36136 0.46412 0.99748 0.76167
10 0.69481 0.57748 0.93003 0.99900 0.25413 0.64661 0.17132 0.53464 0.52705 0.69602
11 0.80142 0.64567 0.38915 0.40716 0.76797 0.37083 0.53872 0.30022 0.43767 0.60257
12 0.25769 0.28265 0.26135 0.52688 0.11867 0.05398 0.43797 0.45228 0.28086 0.84568
13 0.61763 0.77188 0.54997 0.28352 0.57192 0.22751 0.82470 0.92971 0.29091 0.35441
14 0.54302 0.81734 0.15723 0.10921 0.20123 0.02787 0.97407 0.02481 0.69785 0.58025
15 0.80089 0.48271 0.45519 0.64328 0.48167 0.14794 0.07440 0.53407 0.32341 0.30360
16 0.60138 0.40435 0.75526 0.35949 0.84558 0.13211 0.29579 0.30084 0.47671 0.44720
17 0.56644 0.52133 0.55069 0.57102 0.67821 0.54934 0.66318 0.35153 0.36755 0.88011
18 0.97091 0.42397 0.08406 0.04213 0.52727 0.08328 0.24057 0.78695 0.91207 0.18451
19 0.71447 0.27337 0.62158 0.25679 0.63325 0.98669 0.16926 0.28929 0.06692 0.05049
20 0.18849 0.96248 0.46509 0.56863 0.27018 0.64818 0.40938 0.66102 0.65833 0.39169

0NN N kW~
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Source: taken with permission from Table 2.1 of Kuzma (1998).

If the uniform random number U is in [0.4, 0.5), the pig index / is 5.
If the uniform random number U is in [0.5, 0.6), the pig index [ is 6.
If the uniform random number U is in [0.6, 0.7), the pig index / is 7.
If the uniform random number U is in [0.7, 0.8), the pig index [ is 8.
If the uniform random number U is in [0.8, 0.9), the pig index / is 9.
If the uniform random number U is in [0.9, 1.0), the pig index [ is 10.

In Table 8.4, the indices replace the random numbers from Table 8.3. Then in Table
8.5, the treatment group values from Table 8.2 replace the indices. The rows in
Table 8.5 show the bootstrap sample averages with the bottom row showing the av-
erage of the 20 bootstrap samples.

Note in Table 8.5 the similarity of the overall bootstrap estimates to the sample
estimates. For the original sample the sample, mean was 1085.9 and the estimate of
its standard error was 226.77. By comparison, the bootstrap estimate of the mean is
1159.46 and its bootstrap estimated standard error is 251.25. The standard error is
obtained by computing a sample standard deviation for the 20 bootstrap sample es-
timates in Table 8.4.

Bootstrap percentile confidence intervals are obtained by ordering the bootstrap
estimates from smallest to largest. For an approximate 90% confidence interval, the
Sth percentile and the 95th percentile are taken as the endpoints of the interval.

Because there are 20 estimates, the interval is from the second smallest to the
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TABLE 8.4. Random Pig Indices Based on Table 8.3

1 1 1 2 5 5 10 2 2 9 10
2 7 4 5 2 1 2 7 4 9 5
3 1 9 5 10 9 8 7 5 2 2
4 3 4 10 7 8 5 9 9 9 9
5 7 8 9 7 3 1 6 1 1 8
6 7 7 5 8 2 6 6 7 6 2
7 2 9 2 3 6 9 10 7 2 5
8 2 4 4 7 6 9 2 8 10 6
9 5 3 3 9 8 5 4 5 10 8
10 7 6 10 10 3 7 2 6 6 7
11 9 7 4 5 8 4 6 4 5 7
12 3 3 3 6 2 1 5 5 3 9
13 7 8 6 3 6 3 9 10 3 4
14 6 9 2 2 3 1 10 1 7 6
15 9 5 5 7 5 2 1 6 4 4
16 7 5 8 4 9 2 3 4 5 5
17 6 6 6 6 7 6 7 4 4 9
18 10 5 1 1 6 1 3 8 10 2
19 8 3 7 3 7 10 2 3 1 1
20 2 10 5 6 3 7 5 7 7 4

next to largest, as 5% of the observations are below the second smallest (1/20) and
5% are above the second largest (1/20). Consequently, the 90% bootstrap percentile
method confidence interval for the mean is obtained by inspecting Table 8.6, which
orders the bootstrap mean estimates.

Since observation number 2 in increasing rank order is 796.0 and observation 19
in rank order is 1517.4, the confidence interval is [796.0, 1517.4]. Compare this to
the parametric 90% interval of [670.2, 1501.6]. This difference between the two
calculations could be due to the nonnormality of the data.

We will revisit the results for a random sample of 200 after computing the more
precise estimates based on 10,000 bootstrap samples. Using 10,000 bootstrap sam-
ples, we will also be able to compute and compare the 95% confidence intervals.
These procedures will require the use of the computer program Resampling Stats.

Resampling Stats is a product of the company of the same name founded by Ju-
lian Simon and Peter Bruce to provide software tools to teach and perform statisti-
cal calculations by bootstrap and other resampling methods. Their software is dis-
cussed further in Chapter 16.

Using the Resampling Stats software, we created the following program (dis-
played in italics) in the Resampling Stats language:

data (543 666 455 823 1716 797 2828 1251 702 1078) bdloss
maximize z 15000

mean bdloss mb

stdev bdloss sigh
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TABLE 8.5. Bootstrap Sample Blood Loss Values and Averages Based on Pig Indices from

Table 8.4

Bootstrap
Sample

1 2 3 4 5 6 7 8 9 10 Average
1 543 543 666 1716 1716 1078 666 666 702 1078 937.4
2 2828 823 1716 666 543 666 2828 823 702 1716  1331.1
3 543 702 1716 1078 702 1251 2828 1716 666 666 1186.8
4 455 823 1078 2828 1251 1716 702 702 702 702 1095.9
5 2828 1251 702 2828 455 543 797 543 543 1251 1449.2
6 2828 2828 1716 1251 666 797 797 2828 797 666 15174
7 666 702 666 455 797 702 1078 2828 666 1716 1027.6
8 666 823 823 2828 797 702 666 1251 1078 797 1043.1
9 1716 455 455 702 1251 1716 823 1716 1078 1251 1116.3
10 2828 797 1078 1078 455 2828 666 797 797 2828 14152
11 702 2828 823 1716 1251 823 797 823 1716 2828  1430.7
12 455 455 455 797 666 543 1716 1716 455 702 796.0
13 2828 1251 797 455 797 455 702 1078 455 823 964.1
14 797 702 666 666 455 543 1078 543 2828 797 627.2
15 702 1716 1716 2828 1716 666 543 797 823 823  1233.0
16 2828 1716 1251 823 702 666 455 823 1716 1716  1269.6
17 797 797 797 797 2828 797 2828 823 823 702 1198.9
18 1078 1716 543 543 797 543 455 1251 1078 666 867.0
19 1251 455 2828 455 2828 1078 666 455 543 543 1110.2
20 666 1078 1716 797 455 2828 1716 2828 2828 823 15735

Average of twenty bootstrap samples 1159.46

print mb sigh
repeat 10000

end

sample 10 bdloss bootb
mean bootb mbs$
stdev bootb sighs$

score mbs$ z

histogram z
percentilez (2.5 97.5) k
print mb k

The first line of the code is the data statement. An array is a collection or vector
of values stored under a common name and indexed from 1 to n, where # is the ar-
ray size. It takes the 10 blood loss values for the pigs and stores it in an array called

bdloss; bdloss is an array of size n = 10.

The next line is the maxsize statement. This statement specifies an array size of
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TABLE 8.6. Bootstrap Estimates of Mean Blood Loss
in Increasing Order

Ordered Value Bootstrap Mean
1 627.2
2 796.0
3 867.0
4 937.4
5 964.1
6 1027.6
7 1043.1
8 1095.9
9 1110.2

10 1116.3
11 1186.8
12 1198.9
13 1233.0
14 1269.6
15 1331.3
16 1415.2
17 1430.7
18 1449.2
19 1517.4
20 1573.5

15,000 for the array z. By default, arrays are normally limited to be 1000 in length.
So the n = 15,000 for the array z. We will be able to generate up to 15,000 bootstrap
samples (i.e., B = 10,000 for the number of bootstrap samples in this application,
but the number could have been as large as 15,000).

The next two statements, mean and stdev, compute the sample mean and sample
standard deviation, respectively, for the data in the bdloss array. The results are
stored in the variables mb and sigb for the mean and standard deviation, respective-
ly. The print statement tells the computer to print out the results.

The repeat statement then tells the computer how many times to repeat the next
several statements. It starts a loop (like a do loop in Fortran). The sample statement
tells the computer how to generate the bootstrap samples. The number /0 tells it to
sample with replacement 10 times.

The array bdloss appears in the position to tell the computer to sample from the
data in the bdloss array. Then the name bootb is the array to store the bootstrap sam-
ple. The next two statements produce the sample means and standard deviations for
the bootstrap samples. The score statement tells the computer to keep the results for
the means in a vector called z. The end statement indicates the end of the loop that
does the calculations for each of the 10,000 bootstrap samples.
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The histogram statement then takes the results in z and creates a histogram, auto-
matically choosing the number of bins (i.e., intervals for the histogram), the bin
width and the center of each bin. The percentile statement tells the computer to list
the specified set of percentiles from the distribution determined by the array of
bootstrap means that are stored in z (like the last column in Table 8.5 from the sam-
ple of 20 bootstrap estimates of mean blood loss).

When we choose 2.5 and 97.5, these values will represent the endpoint of a boot-
strap percentile method confidence interval at the 95% confidence level for the
mean based on 10,000 bootstrap samples. The final print statement prints the sam-
ple mean of the original sample and the endpoints of the bootstrap confidence inter-
val. In real time, the program took 1.5 seconds to execute; the results (in bold face)
appeared exactly as follows:

MB =1085.9
SIGB =717.12
Vector no. 1: Z

Bin Cum
Center Freq Pct Pect __

600 156 1.6 1.6

800 1887 18.9 20.4
1000 3579 35.8 56.2
1200 2806 28.1 84.3
1400 1195 11.9 96.2
1600 321 3.2 99.4
1800 47 0.5 99.9
2000 8 0.1 100.0
2200 1 0.0 100.0

Note: Each bin covers all values within 100 of its center.

MB =1085.9
K=7271 1558.9

Interpreting the output, MB represents the sample mean for the original data and
SIGB the standard deviation for the original data. The histogram is for Vector no.
1, the array Z of bootstrap sample means. K is an array of size n = 2 with its first el-
ement the 2.5 percentile from the histogram of bootstrap means and the second ele-
ment the 97.5 percentile from that histogram.

Using 10,000 random samples, the bootstrap percentile method 95% confidence
interval is [727.1, 1558.9]. Notice that this is much different from the confidence
interval we obtained by assuming a normal distribution. Recall that that interval
was [572.89, 1598.91], which is much wider than the interval produced by the boot-
strap percentile method. This result is due to the fact that the distribution for the in-
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Figure 8.3. Histogram of bootstrap means for the pig treatment group blood loss used for 95% bootstrap
percentile method confidence interval.

dividual observations is not normal and the sample size of 10 is too small for the
central limit theorem to apply to the sample mean.

Not only does the bootstrap give a tighter interval than the normal approxima-
tion, but also the resulting interval is more realistic based on the sample we ob-
served! Figure 8.3 shows the bootstrap histogram that indicates a skewed distribu-
tion for the sampling distribution of the mean.

To obtain a 90% bootstrap confidence interval using Resampling Stats, we need
only change the percentile statement above to the following:

percentile z (5.0 95.0) k

The resulting interval is [727.1, 1558.9]. Recall that, based on only 20 bootstrap
samples, we found [796.0, 1517.4] and from normal distribution theory [670.2,
1501.6]. Again, the two bootstrap results are not only different from the results ob-
tained by using the normal distribution, but also are more realistic. We see that 20
samples do not yield an adequate bootstrap interval estimate.

There is a large difference between 20 bootstrap samples and 10,000 bootstrap
samples. The histogram from the Monte Carlo approximation provides a good ap-
proximation to the bootstrap distribution only as the number of Monte Carlo itera-
tions (B) becomes large. For B as high as 10,000, this distribution and the resulting
confidence interval will not change much if we continue to increase B.

However, when B is only 20 this result will not be the case. We chose a small
value of 20 for B so that we could demonstrate all the steps of the bootstrap interval
estimate without having to resort to the computer. But to produce an accurate inter-



8.10 SAMPLE SIZE DETERMINATION FOR CONFIDENCE INTERVALS 175

40
% Bin 1 = 500-700
Bin 2 = 700-900
30 — Bin 3 = 900-1100
Bin 4 = 1100-1300
g 25 — Bin 5 = 1300-1500
8 Bin 6 = 1500-1700
E 20 || Bin 7 = 1700-1900
8 Bin 8 = 1900-2100
$ s . Bin 9 = 2100-2300
10 —
5 S
0 / r r r r r |_| — r
1 2 3 4 5 6 7 8 9
Bin Number

Figure 8.4. Second histogram of bootstrap means for the pig treatment group blood loss. Used for 90%
bootstrap percentile method confidence interval.

val, we did need a large B and resorted to the Resampling Stats program.
Subsequently, we found an estimate for the 90% bootstrap confidence interval
by using a different set of 10,000 bootstrap samples; hence, the histogram (refer to
Figure 8.4) is slightly different from that produced for the 95% confidence interval.
The results for this Monte Carlo approximation are as follows (shown in bold face

type):

MB =1085.9
SIGB =717.12
Vector no. 1: Z

Bin Cum
Center Freq Pct Pct

600 128 1.3 1.3

800 1833 18.3 19.6
1000 3634 36.3 56.0
1200 2796 28.0 83.9
1400 1195 11.9 95.9
1600 345 3.5 99.3
1800 60 0.6 99.9
2000 9 0.1 100.0
2200 1 0.0 100.0

Note: Each bin covers all values within 100 of its center.
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8.10 SAMPLE SIZE DETERMINATION FOR
CONFIDENCE INTERVALS

When conducting an experiment or a clinical trial, cost is an important practical
consideration. Often, the number of tests in an engineering experiment or the num-
ber of patients enrolled in a clinical trial has a major impact on the cost of the ex-
periment or trial. We have seen that the variance of the sample mean decreases by a
factor of 1/n with an increase in the sample size from 1 to n. This statement implies
that in order to obtain precise confidence intervals for the population mean, the
larger the sample the better.

But, because of the cost constraints, we may need to trade off precision of our es-
timate with the cost of the test. Also, with clinical trials, the number of patients who
are enrolled can have a major impact on the time it will take to complete the trial.
Two of the main factors that are impacted by sample size are precision and cost;
thus, sample size also affects the feasibility of a clinical trial.

The real question we must ask is: “How precise an estimate do I need in order to
have useful results?”” We will show you how to address this question in order to de-
termine a minimum acceptable value for n. Once this minimum # is determined, we
can see what this »n implies about the feasibility of the experiment or trial. In many
epidemiological and other health-related studies, sample size estimation is also of
crucial importance. For example, epidemiologists need to know the minimum sam-
ple size required in order to detect differences in occurrences of diseases, health
conditions, and other characteristics by subpopulations (e.g., smokers versus non-
smokers), or in the effects of different exposures or interventions.

In Chapter 9, we will revisit this issue from the perspective of hypothesis testing.
The issues in hypothesis testing are the same and the methods of evaluation are very
similar to those for sample size estimation based on confidence interval width that
we will now describe.

Let us first consider the simplest case of estimating a population mean when the
variance o2 is known. In Section 8.4, we saw that a 95% confidence interval is giv-
en by [X — 1.960/\n, X + 1.960/\/n]. If we subtract the lower endpoint of the in-
terval from the upper endpoint, we see that the width of the interval is X +
1.960//n — X + 1.960/\/n = 2(1.960/\/n) or 3.920/\/n.

The way we determine sample size is to put a constraint on the width 3.920/\Vn
or the half-width 1.966/V/n. The half-width represents the greatest distance a point
in the interval can be away from the point estimate. So it is a meaningful quantity to
constrain. When the main objective is an accurate confidence interval for the para-
meter the half-width of the interval is a very natural choice. Other objectives such
as power of a statistical test can also be used. We specify a maximum value d for
this half-width. The quantity d is very much dependent on what would be a mean-
ingful interval in the particular trial or experiment. Requiring the half-width to be
no larger than d leads to the inequality 1.96 o/\n < d. Using algebra, we see that
Vn = 1.960/d or n = 3.8416 o?/d?. To meet this requirement with the smallest
possible integer n, we calculate the quantity 3.8416 o%/d? and let n be the next inte-
ger larger than this quantity. Display 8.7 summarizes the sample size formula using
the half-width d of a confidence interval.
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Display 8.7. Sample Size Formula Using the
Half-Width d of a Confidence Interval

Take n as the next integer larger than (C)?0%/d?; e.g., for the 95% confidence in-
terval for the mean, take » as the next integer larger than (1.96)20%/d>.

Let us consider the case where we are sampling from a normal distribution with
a known standard deviation of 5, and let us assume that we want the half-width of
the 95% confidence interval to be no greater than 0.5. Then d = 0.5 and o =5 in this
case. Now the quantity 3.8416 a?/d? is 3.8416(5/0.5)> = 3.8416 (10)> = 3.8416(100)
=384.16. So the smallest integer # that satisfies the required inequality is 385.

In order to solve the foregoing problem we needed to know o, which in most
practical situations will be unknown. Our alternatives are to find or guess at an up-
per bound for o, to estimate ¢ from a small pilot study, or to refer to the literature
for studies that may publish estimates of o.

Estimating the sample size for the difference between two means is a problem
similar to estimating the sample size for a single mean but requires knowing two
variances and specifying a relationship between the two sample sizes », and #,..

Recall from Section 8.6 that the 95% confidence interval for the difference be-
tween two means of samples selected from two independent normal distributions
with known and equal variances is given by [(X,—X.)—1.96 o\ (1/n,) + (1/n,), (X, —
X.)+1.96 0/ (1/n,)+(1/n_)]. The half-width of this interval is 1.96 o\/(1/n,) + (1/n,).
Assume 7, = kn, for some proportionality constant £ = 1. The proportionality con-
stant & adjusts for the differences in sample sizes used in the treatment and control
groups, as explained in the next paragraph. Let d be the constraint on the half-width.
The inequality becomes 1.96 oV {1/(kn_)} + {1/(n.)} = 1.96 NV {1/(kn_)} + {1/(n.)}
=1.96 oV(k+ D)/(kn.) < d or knJ(k + 1) = 3.8416 o*d? or n. = 3.8416(k +
Da?/(kd?). If n. = 3.8416 (k + 1)o*/(kd?), then n, = kn, = 3.8416 (k + 1)o?/d?. In
Display 8.8 we present the sample size formula using the half-width d of a confidence
interval for the difference between two population means.

Note that if k=1, then n. = n, = 3.8416 (20°*/d?). Taking k greater than 1 increas-
es n, while it lowers 7., but the total sample size n, + n. = (k + 1)?> 3.8416 o?/(kd?).

Display 8.8. Sample Size Formula Using the Half-Width 4
of a Confidence Interval (Difference Between Two Population
Means When the Sample Sizes Are n and kn, where k> 1)

Take n as the next integer larger than (C)%(k + 1)0%/(kd?); e.g., for the 95% confi-
dence interval for the mean, take n as the next integer larger than (1.96)?(k + 1)

o?/(kd?).
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For k> 1, the result is larger than 4 (3.841652/d?), the result for k=1 [since (1 + 1)?
= 4]. This calculation shows without loss of generality that £ = 1 minimizes the total
sample size. However, in clinical trials there may be ethical reasons for wanting #,
to be larger than #,.

For example, in 1995 Chernick designed a clinical trial (the Tendril DX study) to
show that steroid eluting pacing leads were effective in reducing capture thresholds
for patients with pacemakers. (For more details, see Chernick, 1999, pp. 63-67).
Steroid eluting leads have steroid in the tip of the lead that slowly oozes out into the
tissue. This medication is intended to reduce inflammation. The capture threshold is
the minimum required voltage for the electrical shock from the lead into the heart
that causes the heart to contract (a forced pacing beat). Lower capture thresholds
conserve the pacemaker battery and thus allow a longer period before replacement
of the pacemaker. The pacing leads are connected from a pacemaker that is implant-
ed in the patient’s chest and run through part of the circulatory system into the heart
where they provide an electrical stimulus to induce pacing heart beats (beats that re-
store normal heart rhythm).

The investigator chose a value of k£ = 3 for the study because competitors had
demonstrated reductions in capture thresholds for their steroid leads that were ap-
proved by the FDA based on similar clinical trials. Factors for &k such as 2 and 3
were considered because the company and the investigating physicians wanted a
much greater percentage of the patients to receive the steroid leads but did not want
k to be so large that the total number of patients enrolled would become very expen-
sive. Consequently, the physicians who were willing to participate in the trial want-
ed to give the steroid leads to most of their patients, as they perceived it to be the
better treatment than the use of leads without the steroid.

Chernick actually planned the Tendril DX trial (assuming thresholds were nor-
mally distributed) so that he could reject the null hypothesis of no difference in cap-
ture threshold versus an alternative hypothesis (i.e., that the difference was at least
0.5 volts with statistical power of 80% as the alternative). In Chapter 9, when we
consider sample size for hypothesis testing, we will look again at these assumptions
(e.g., statistical power) and requirements.

For now, to illustrate sample size calculations based on confidence intervals, let
us assume that we want the half-width of a 95% confidence interval for the mean
difference to be no greater than d = 0.2 volts. Assume that both leads have the
same standard deviation of 0.8 volts. Then, since n, = 3.8416 [(k + 1)o*/d*] =
3.8416[4(0.64/0.04)] = 245.86 or 246 (rounding to the next integer) and n, = n,/3 =
82, this gives a total sample size of 328.

Without changing assumptions, suppose we were able to let k= 1. Then n,=n, =
3.8416[20%/d?] = 3.8416[2(0.64/0.04)] = 122.93 or 123. This modification gives a
much smaller total sample size of 246. Note that by going to a 3:1 randomization
scheme (i.e., k = 3), n, increased by a factor of 2 or a total of 123, while n, decreased
by only 41. We call it a 3:1 randomization scheme because the probability is 0.75
that a patient will receive the steroid lead and 0.25 that a patient will receive the
nonsteroid lead.

Formulae also can be given for more complex situations. However, in some cases
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iterative procedures by computer are needed. Currently, there are a number of soft-
ware packages available to handle differing confidence sets and hypothesis testing
problems under a variety of assumptions. We will describe some of these software
packages in Section 16.3. See the related references in Section 8.12 and Section 16.5.

8.11

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

EXERCISES

In your own words define the following terms:

a. Descriptive statistics

b. Inferential statistics

c. Point estimate of a population parameter

d. Interval (confidence interval) estimate of a population parameter
e. Type I error

f. Biased estimator of a population parameter

g. Mean square error

What are the desirable properties of an estimator of a population parameter?

What are the advantages and disadvantages of using point estimates for sta-
tistical inference?

What are the desirable properties of a confidence interval? How do sample
size and the level of confidence (e.g., 90%, 95%, 99%) affect the width of a
confidence interval?

State the advantages and disadvantages of using confidence intervals for sta-
tistical inference.

Two situations affect the choice of a calculation of a confidence interval: (1)
the population is known; (2) the population variance is unknown. How would
you calculate a confidence interval given these two different circumstances?

Explain the bootstrap principle. How can it be used to make statistical infer-
ences?

How can bootstrap confidence intervals be generated? Name the simplest form
of a bootstrap confidence interval. Are bootstrap confidence intervals exact?

Suppose we randomly select 20 students enrolled in an introductory course in
biostatistics and measure their resting heart rates. We obtain a mean of 66.9
(8 =9.02). Calculate a 95% confidence interval for the population mean and
give an interpretation of the interval you obtain.

Suppose that a sample of pulse rates gives a mean of 71.3, as in Exercise 8.9,
with a standard deviation that can be assumed to be 9.4 (close to the estimate
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8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

ESTIMATING POPULATION MEANS

observed in exercise 8.9). How many patients should be sampled to obtain a 95
% confidence interval for the mean that has half-width 1.2 beats per minute?

In a sample of 125 experimental subjects, the mean score on a postexperi-
mental measure of aggression was 55 with a standard deviation of 5. Con-
struct a 95% confidence interval for the population mean.

Suppose the sample size in exercise 8.11 is 169 and the mean score is 55 with
a standard deviation of 5. Construct a 99% confidence interval for the popu-
lation mean.

Suppose you want to construct a 95% confidence interval for mean aggres-
sion scores as in Exercise 8.11, and you can assume that the standard devia-
tion of the estimate is 5. How many experimental subjects do you need for
the half-width of the interval to be no larger than 0.4?

What would the number of experimental subjects have to be under the as-
sumptions in Exercise 8.13 if you want to construct a 99% confidence inter-
val with half-width no greater then 0.4? Under the same criteria we decide
that » should be large enough so that a 95% confidence interval would have
this half-width of 0.4. Which confidence interval requires the larger sample
size and why? What is » for the 95% interval?

The mean weight of 100 men in a particular heart study is 61 kg with a stan-
dard deviation of 7.9 kg. Construct a 95% confidence interval for the mean.

The standard hemoglobin reading for normal males of adult age is 15 g/100
ml. The standard deviation is about 2.5 g/100 ml. For a group of 36 male con-
struction workers, the sample mean was 16 g/100 ml.

a. Construct a 95% confidence interval for the male construction workers.
What is your interpretation of this interval relative to the normal adult
male population?

b. What would the confidence interval have been if the above results were
obtained based on 49 construction workers?

c. Repeat b for 64 construction workers.

d. Do fixed-level confidence intervals shrink or widen as the sample size in-
creases (all other factors remaining the same)? Explain your answer.

e. What is the half-width of the confidence interval that you would obtain for
64 workers?

Repeat Exercise 8.16 for 99% confidence intervals.
The mean diastolic blood pressure for 225 randomly selected individuals is

75 mmHg with a standard deviation of 12.0 mmHg. Construct a 95% confi-
dence interval for the mean.
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8.19 Change exercise 8.18 to assume there are 400 randomly selected individuals

with a mean of 75 and standard deviation of 12. Construct a 99% confidence
interval for the mean.

8.20 In Exercise 8.18, how many individuals must you select to obtain the half-

width of a 99% confidence interval no larger than 0.5 mmHg?
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CHAPTER 9

Tests of Hypotheses

If the fresh facts which come to our knowledge all fit themselves

into the scheme the hypothesis may gradually become a solution.
—Sherlock Holmes in Sir Arthur Conan Doyle’s The Complete Sherlock Holmes,
The Adventure of Wisteria Lodge

9.1 TERMINOLOGY

Hypothesis testing is a formal scientific process that accounts for statistical uncer-
tainty. As such, the process involves much new statistical terminology that we now
introduce. A hypothesis is a statement of belief about the values of population para-
meters. In hypothesis testing, we usually consider two hypotheses: the null and al-
ternative hypotheses. The null hypothesis, denoted by H,, is usually a hypothesis of
no difference. Initially, we will consider a type of H, that is a claim that there is no
difference between the population parameter and its hypothesized value or set of
values. The hypothesized values chosen for the null hypothesis are usually chosen
to be uninteresting values. An example might be that in a trial comparing two dia-
betes drugs, the mean values for fasting plasma glucose are the same for the two
treatment groups.

In general, the experimenter is interested in rejecting the null hypothesis. The al-
ternative hypothesis, denoted by H,, is a claim that the null hypothesis is false; i.e.,
the population parameter takes on a value different from the value or values specified
by the null hypothesis. The alternative hypothesis is usually the scientifically inter-
esting hypothesis that we would like to confirm. By using probability theory, our goal
is to lend credence to the alternative hypothesis by rejecting the null hypothesis. In
the diabetes example, an interesting alternative might be that the fasting plasma glu-
cose mean is significantly (both statistically and clinically) lower for patients with
the experimental drug as compared to the mean for patients with the control drug.

Because of statistical uncertainty regarding inferences about population parame-
ters based on sample data, we cannot prove or disprove either the null or the alter-
native hypotheses. Rather, we make a decision based on probability and accept a
probability of making an incorrect decision.

182 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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The type I error is defined as the probability of falsely rejecting the null hypoth-
esis; i.e., to claim on the basis of data from a sample that the true parameter is not a
value specified by the null hypothesis when in fact it is. In other words, a type I er-
ror occurs when the null hypothesis is true but we incorrectly reject H,. The other
possible mistake we can make is to not reject the null hypothesis when the true pa-
rameter value is specified by the alternative hypothesis. This kind of error is called
a type Il error.

Based on the observed data, we form a statistic (called a test statistic) and con-
sider its sampling distribution in order to define critical values for rejecting the null
hypothesis. For example, the Z and ¢ statistics covered previously (refer to Chapter
8) can serve as test statistics for those population parameters. A statistician uses one
or more cutoff values for the test statistic to determine when to reject or not to reject
the null hypothesis.

These cutoff values are called critical values; the set of values for which the null
hypothesis would be rejected is called the critical region, or rejection region. The
other values of the test statistic form a region that we will call the nonrejection re-
gion. We are tempted to call the nonrejection region the acceptance region; howev-
er, we hesitate to do so because the Neyman—Pearson approach to hypothesis test-
ing chooses the critical value to control the type I error, but the type II error then
depends on the specific value of the parameter when the alternative is true. In the
next section, we will discuss this point in detail as well as the Neyman—Pearson ap-
proach.

The probability of observing a value in the critical region when the null hypothe-
sis is correct is called the significance level; the hypothesis test is also called a test
of significance. The significance level is denoted by «, which often is set at a low
value such as 0.01 or 0.05. These values also can be termed error levels; i.e., we are
acknowledging that it is acceptable to be wrong one time out of 100 tests or five
times out of 100 tests, respectively. The symbol « is also the probability of a type I
error; the symbol 8 is used to denote the probability of a type II error, as explained
in Section 9.7.

Given a test statistic and an observed value, one can compute the probability of
observing a value as extreme or more extreme than the observed value when the
null hypothesis is true. This probability is called the p-value. The p-value is related
to the significance level in that if we had chosen the critical value to be equal to the
observed value of the test statistic, the p-value would be equal to the significance
level.

9.2 NEYMAN-PEARSON TEST FORMULATION

In the previous section, we introduced the notion of hypothesis testing and defined
the terms null hypothesis and alterative hypothesis, and type I error and type II er-
ror. These terms are attributed to Jerzy Neyman and Egon Pearson, who were the
developers of formal statistical hypothesis testing in the 1930s. Earlier, R. A. Fisher
developed what he called significance testing, but his description was vague and
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followed a theory of inference called fiducial inference that now appears to have
been discredited. The Neyman and Pearson approach has endured but is also chal-
lenged by the Bayesian approach to inference (covered in Section 9.16).

In the Neyman and Pearson approach, we construct the null and alternative hy-
potheses and choose a test statistic. We need to keep in mind the test statistic, the
sample size, and the resulting sampling distribution for the test statistic under the
null hypothesis (i.e., the distribution when the null hypothesis is assumed to be
true). Based on these three factors, we determine a critical value or critical values
such that the type I error never exceeds a specified value for o when the null hy-
pothesis is true.

Sometimes, the null hypothesis specifies a unique sampling distribution for a test
statistic. A unique sampling distribution for the null hypothesis occurs when the fol-
lowing criteria are met: (1) we hypothesize a single value for the population mean;
(2) the variance is assumed to be known; and (3) the normal distribution is assumed
for the population distribution. Under these circumstances, the sampling distribu-
tion of the test statistic is unique. The critical values can be determined based on
this unique sampling distribution; i.e., for a two-tailed (two-sided) test, the 5th per-
centile and the 95th percentile of the sampling distribution would be used for the
critical values of the test statistic; the 10th percentile or the 90th percentile would
be used for a one-tailed (one-sided) test depending on which side of the test is the
alternative. In Section 9.4, one-sided tests will be discussed and contrasted with
two-sided tests.

However, in two important situations the sampling distribution of the test statis-
tic is not unique. The first situation occurs when the population variance (o?) is un-
known; in this instance, o? is called a nuisance parameter because it affects the
sampling distribution but otherwise is not used in the hypothesis test. Nevertheless,
even when the population variance is unknown, o> may influence the sampling dis-
tribution of the test statistic. For example, o is relevant to the Behrens—Fisher
problem, in which the distribution of the mean difference depends on the ratio of
two population variances. (See the article by Robinson on the Behrens—Fisher prob-
lem in Johnson and Kotz, 1982). An exception that would not require o2 is the use
of the ¢ statistic in a one-sample hypothesis test, because the ¢ distribution does not
depend on o2.

A second situation in which the sampling distribution of the test statistic is not
unique occurs during the use of a composite null hypothesis. A composite null hy-
pothesis is one that includes more than one value of the parameter of interest for the
null hypothesis. For example, in the case of a population mean, instead of consider-
ing only the value 0 for the null hypothesis, we might consider a range of small val-
ues; all values of w such that |u| < 0.5 would be uninteresting and, hence, included
in the null hypothesis.

To review, we have indicated two scenarios: (1) when the sampling distribution
depends on a nuisance parameter, and (2) when the hypothesized parameter can
take on more than one value under the null hypothesis. For either situation, we con-
sider the distribution that is “closest” to the alternative in a set of distributions for
parameter values in the interval for the null hypothesis. The critical values deter-
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mined for that “closest” distribution would have a significance level higher than
those for any other parameter values under the null hypothesis. That significance
level is defined to be the level of the overall test of significance. However, this issue
is beyond the scope of this text and, hence, will not be elaborated further.

In summary, the Neyman—Pearson approach controls the type I error. Regardless
of the sample size, the type I error is controlled so that it is less than or equal to «
for any value of the parameters under the null hypothesis. Consequently, if we use
the Neyman—Pearson approach, as we will in Sections 9.3, 9.4, 9.9, and 9.10, we
can be assured that the type I error is constrained so as to be as small or smaller than
the specified . If the test statistic falls in the rejection region, we can reject the null
hypothesis safely, knowing that the probability that we have made the wrong deci-
sion is no greater than «.

However, the type II error is not controlled by the Neyman—Pearson approach.
Three factors determine the probability of a type II error (): (1) the sample size, (2)
the choice of the test statistic, and (3) the value of the parameter under the alterna-
tive hypothesis. When the values for the alternative hypothesis are close to those for
the null hypothesis, the type II error can be close to 1 — «, which defines the region
of nonrejection for the null hypothesis. Thus, the probability of a type II error in-
creases as the difference between the mean for the null hypothesis and the mean at
the alternative decreases. When this difference between these means becomes large,
B becomes small, i.e., closer to @, which defines the significance level of the test as
well as its rejection region.

For example, suppose we have a standard normal distribution with mean u =0
and variance of the sampling distribution of the sample mean o3 = 1 under the null
hypothesis for a sample size n = 5. By algebra, we can determine that the population
has a variance of 02 =5 (i.e., 02 = (0%/\V/5) = 1). We choose a two-sided test with
significance level 0.05 for which the critical values are —1.96 and 1.96. Under the
alternative hypothesis, if the mean u = 0.1 and variance o> = 1, then the power of
the test (defined to be 1 — the type II error) is the probability that the sample mean is
greater than 1.96 or less than —1.96. But this probability is the same as the probabil-
ity that the Z value for the standard normal distribution is greater than 1.86 or less
than —2.06. Note that we find the values 1.86 and —2.06 by subtracting 0.1 (u under
the alternative hypothesis) from +1.96 and —1.96.

From the table of the standard normal distribution (Appendix E), we see that
P[Z<-2.06]=0.5-0.4803=0.0197 and P[Z> 1.86] = 0.5 — 0.4686 = 0.0314. The
power of the test at this alternative is 0.0197 +0.0314 = 0.051 1. This mean is close to
zero and the power is not much higher than the significance level 0.05. On the other
hand, if w = 2.96 under the alternative with a variance o> = 1, then the power of the
test at this alternative is P[Z<-4.92} + P[Z>—1]. Since P{Z <—4.92] is almost zero,
the power is nearly equal to P[Z>—-1]1=0.5+P[0>Z>-1]=0.5+P[0<Z<1]=0.5
+0.3413 =0.8413. So as the alternative moves relatively far from zero, the power be-
comes large. The relationship between the alternative hypothesis and the power of a
test will be illustrated in Figures 9.1 and 9.2 later in the chapter.

Consequently, when we test hypotheses using the Neyman—Pearson approach,
we do not say that we accept the null hypothesis when the test statistic falls in the
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nonrejection region; there may be reasonable values for the alternative hypothesis
when the type II error is high.

In fact, since we select « to be small so that we have a small type I error, 1 — a is
large. Some values under the alternative hypothesis have a high type II error, indi-
cating that the test has low power at those alternatives.

In Section 9.12, we will see that the way to control the type II error is to be inter-
ested only in alternatives at least a specified distance (such as d) from the null val-
ue(s). In addition, we will require that the sample size is large enough so that the
power at those alternatives is reasonably high. By alternatives we mean the alterna-
tive distribution closest to the null distribution, which is called the least favorable
distribution. By reasonably high we mean at least a specified value, such as 8. The
symbol B (B error) refers to the probability of committing a type II error.

9.3 TEST OF A MEAN (SINGLE SAMPLE, POPULATION
VARIANCE KNOWN)

The first and simplest case of hypothesis testing we will consider is the test of a
mean (Hy: @ = po). In this case, we will assume that the population variance is
known; thus, we are able to use the Z statistic. We perform the following steps for a
two-tailed test (in the next section we will look at both one-tailed and two-tailed
tests):

1. State the null hypothesis Hj: u = w, versus the alternative hypothesis H;: u
F o-

2. Choose a significance level a = « (often we take a, = 0.05 or 0.01).

3. Determine the critical region, that is, the region of values of Z in the upper
and lower /2 tails of the sampling distribution for Z when u = u, (i.c., the
sampling distribution when the null hypothesis is true).

4. Compute the Z statistic: Z= (X — uo)/(0/\/n) for the given sample and sample
size n.

5. Reject the null hypothesis if the test statistic Z computed in step 4 falls in the
rejection region for this test; otherwise, do not reject the null hypothesis.

As an example, consider the study that used blood loss data from pigs (refer to
Table 8.1). Take py = 2200 ml (a plausible amount of blood to lose for a pig in the
control group). In this case, the sensible alternative would be one-sided; we would
assume w < 2200 for the alternative with the treatment group, because we expect
the treatment to reduce and not to increase blood loss.

However, if we are totally naive about the effectiveness of the drug, we might
consider the two-sided alternative, namely, H,: p, # 2200. In this section we are il-
lustrating the two-sided test, so we will look at the two-sided alternative. We will
use the sample data given in Section 8.9 and assume that the standard deviation o is
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known to be 720. The sample mean is 1085.9 and the sample size n = 10. We now
have enough information to carry out the test. The five steps are as follows:

1.

State the null hypothesis: The null hypothesis is Hy: = po = 2200 versus the
alternative hypothesis H;: w # o = 2200.

2. Choose a significance level a = a, = 0.05.

Determine the critical region, that is, the region of values of Z in the upper
and lower 0.025 tails of the sampling distribution for Z when w = u, (i.e.,
when the null hypothesis is true). For o, = 0.05, the critical values are Z =
+1.96 and the critical region includes all values of Z> 1.96 or Z <-1.96.
Compute the Z statistic: Z = (X — uo)/(0/\V/n) for the given sample and sample
size n = 10. We have the following data: n = 10; the sample mean (X)
is 1085.9; o = 720; and u, = 2200. Z = (1085.9 — 2200)/(720/\/10) =
—1114.1/227.684 = —4.893.

Since 4.893 (the absolute value of the test statistic) is clearly larger than 1.96,
we reject H, at the 5% level; i.e., —4.893 < —1.960. Therefore, we conclude
that the treatment was effective in reducing blood loss, as the calculated Z is
negative, implying that u < w,.

9.4 TEST OF A MEAN (SINGLE SAMPLE, POPULATION
VARIANCE UNKNOWN)

In the case of a test of a mean (H,: w = w,) when the population variance is un-
known, we estimate the population variance by using s and apply the ¢ distribution
to define rejection regions. We perform the following steps for a two-tailed test:

1.

State the null hypothesis H,: u = u, versus the alternative hypothesis H: u
# wo- Note: This hypothesis set is exactly as stated in Section 9.3.

2. Choose a significance level a = «, (often we take o, = 0.05 or 0.01).

Determine the critical region for the appropriate ¢ distribution, that is, the re-
gion of values of ¢ in the upper and lower a/2 tails of the sampling distribu-
tion for Student’s ¢ distribution with n — 1 degrees of freedom when u = u,
(i.e., the sampling distribution when the null hypothesis is true).

Compute the ¢ statistic: ¢ = (X — o)/(s/\/n) for the given sample and sample
size n where X is the sample mean and s is the sample standard deviation.

. Reject the null hypothesis if the test statistic # computed in step 4 falls in the

rejection region for this test; otherwise, do not reject the null hypothesis.

For example, reconsider the pig treatment data; take u, = 2200 ml (a plausible
amount of blood to lose for a pig in the control group). In this case, because the sen-
sible alternative would be one-sided, we could assume w < 2200 for the alternative
with the treatment group, as we expect the treatment to reduce blood loss and not to



188 TESTS OF HYPOTHESES

increase it. However, again assume we are totally naive about the effectiveness of the
drug; so we consider the two-sided alternative hypothesis, namely, H;: u, # 2200.
In this section, we are illustrating the two-sided test, so we will look at the two-
sided alternative hypothesis. We will use the sample data given in Section 8.9 but
this time use the standard deviation s = 717.12. The sample mean is 1085.9 and the
sample size n = 10. We now have enough information to run the test.
The five steps for hypothesis testing yield the following:

1. State the null hypothesis. The null hypothesis is Hy: = uo = 2200 versus the
alternative hypothesis H;: w # wo = 2200.

2. Choose a significance level a = oy = 0.05.

3. Determine the critical region, that is, the region of values of # in the upper and
lower 0.025 tails of the sampling distribution for # (Student’s ¢ distribution
with 9 degrees of freedom) when u = w, (i.c., the sampling distribution when
the null hypothesis is true). For o, = 0.05, the critical values are t = £2.2622;
the critical region includes all values of # > 2.2622 or t <-2.2622.

4. Compute the 7 statistic: = (X — uo)/(s/\/n) for the given sample and sample
size n = 10; since n = 10, the sample mean (X)is 1085.9, s =717.12, and pu, =
2200. Then ¢ = (1085.9 — 2200)/(717.12/7V/10) = -1114.1/226.773 = —4.913.

5. Given that 4.913 (the absolute value of the ¢ statistic) is clearly larger than
2.262, we reject H, at the 5% level.

Later, in Section 9.6, we will see that a more meaningful quantity than the 5%
level would be a specific p-value, which gives us more information as to the degree
of significance of the test. In Section 9.6, we will calculate the p-value for a hypoth-
esis test.

9.5 ONE-TAILED VERSUS TWO-TAILED TESTS

In the previous section, we pointed out that when determining the significance level
of a test we must specify either a one-tailed or a two-tailed test. The decision should
be based on the context of the problem, i.e., the outcome that we wish to demon-
strate. We must consider the relevant research hypothesis, which becomes the alter-
native hypothesis.

For example, in the Tendril DX trial, we have strong prior evidence from other
studies that the steroid (treatment group) leads tend to provide lower capture thresh-
olds than the nonsteroid (control group) leads. Also, we are interested in marketing
our product only if we can claim, as do our competitors, that our lead reduces cap-
ture thresholds by at least 0.5 volts as compared to nonsteroid leads.

Because we would like to assert that we are able to reduce capture thresholds, it
is natural to look at a one-sided alternative. In this case, the null hypothesis H,, is w;
— o = 0 versus the alternative H, that w; — uy <0, where u,; = the population mean
for the treatment group and pw, = the population mean for the control group. In Sec-
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tion 9.8, we will see that the appropriate # statistic (under the normality assumption)
would have a critical value determined by ¢ < —¢, where ¢, is the 100(1 — «) per-
centile of Student’s ¢ distribution with n, + n,— 2 degrees of freedom, 7, is the num-
ber of observations in the control group, and #, is the number of observations in the
treatment group.

In the real application, Chernick and associates took 7, = 3n, and chose the val-
ues for n,. and n, such that the power of the test was at least 80% when u; — uy <
—0.5; a was set at 0.05. We will calculate the sample size for this example in Sec-
tion 9.8 after we introduce the power function.

In other applications, we may be trying to show only equivalence in medical ef-
fectiveness of a new treatment compared to an old one. For medical devices or
pharmaceuticals, this test of equivalence may occur when the current product (the
control) is an effective treatment and we want to show that the new product is
equally effective. However, the new product may be preferred for other reasons,
such as ease of application. One example might be the introduction of a simpler
needle (called a pen in the industry) to inject the insulin that controls sugar levels
for diabetic patients, as compared to a standard insulin injection.

In such cases, the null hypothesis is u; — py = 0, versus the alternative w, — ny #
0. Here, we wish to control the type II error. To do this for 8 error, we must specify
a 6 so that we have a good chance of rejecting equivalence if |, — uo| > 6. Often, &
is chosen to be some clinically relevant difference in the means. The sample size
would be chosen so that when |, — | > 8, the probability that the test statistic is
large enough to reject H, is high (80% or 90% or 95%), corresponding to a low type
II error (20% or 10% or 5%, respectively). For this problem, H,, is rejected when |¢|
>t for t,,, equal to the 100(1 — a/2) percentile of the ¢ distribution with n, + n,— 2
degrees of freedom; the value 7, is the number of observations in the control group;
n, is the number of observations in the treatment group.

However, such a test is really backwards because the scientific hypothesis that
we want to confirm is the null hypothesis rather than the alternative. It is for this
reason that Blackwelder and others (Blackwelder, 1982) have recommended, for
equivalence testing (defined in the foregoing example) and also for noninferiority
testing (a one-sided form of equivalence), that we really want to “prove the null hy-
pothesis” in the Neyman—Pearson framework.

Hence, Blackwelder advocates simply switching the null and alternative hy-
potheses so that rejecting the null hypothesis becomes rejection of equivalence and
accepting the alternative is acceptance of equivalence. Switching the null and alter-
native hypotheses allows us to control, through type I error, the probability of false-
ly claiming equivalence. When we set the type I («) and type II (8) errors (i.e., the
type Il error at |w; — uo| = ) to be equal, the distinction between « and 3 errors be-
comes unimportant. The reason the distinction is unimportant is that if the a = 3,
both formulations yield the same required sample size for a specified power. When
|y — po| = 6 but @ # B, the test results are different from those when a = 3. Be-
cause it is common to choose a < B3, the Blackwelder approach often is preferred,
particularly by the Food and Drug Administration. For more details see Black-
welder’s often-cited article (Blackwelder, 1982).
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Now let us look step by step at a one-tailed (left-tail) test procedure for the pig
blood loss data considered in the previous section. A left-tailed test means that we
reject H, if we can show that u < w,. Alternatively, a right-tailed test denotes reject-
ing H, if we can show that u > w,.

1.

State the null hypothesis H,: w = u, versus the alternative hypothesis H;: u <
Mo-

2. Choose a significance level a = « (often we take o, = 0.05 or 0.01).

Determine the critical region, i.e., the region of values of # in the lower (left-
tail) tail of the sampling distribution for Student’s ¢ distribution with oy =
0.05 and n — 1 degrees of freedom when w = u, (i.e., the sampling distribu-
tion when the null hypothesis is true).

Compute the ¢ statistic: = (X — po)/(s/\/n) for the given sample and sample
size n, where X is the sample mean and s is the sample standard deviation.
Reject the null hypothesis if the test statistic # (computed in step 4) falls in the
rejection region for this test; otherwise, do not reject the null hypothesis.

Again we will use the sample data given in Section 8.9 but this time use the stan-
dard deviation s = 717.12. The sample mean is 1085.9 and the sample size n = 10.
We now have enough information to do the test.

We have the following five steps:

1.

The null hypothesis is Hy: = ug = 2200 (Hy: = 2200) versus the alterna-
tive hypothesis H;: p < o =2200 (H;: n <2200).

Choose a significance level a = o, = 0.05.

Determine the critical region, that is, the region of values of ¢ in the lower
0.05 tail of the sampling distribution for ¢ (Student’s # distribution with 9 de-
grees of freedom) when u = u, (i.e., the sampling distribution when the null
hypothesis is true). For «, = 0.05 the critical value is = —1.8331; therefore,
the critical region includes all values of # <—1.8331.

Compute the ¢ statistic: = (X — p,)/(s/\/n) for the given sample and sample
size n = 10. We know that n = 10, the sample mean is 1085.9, s = 717.12, and
Mo =2200. = (1085.9 — 2200)/(717.12/\/10) = —-1114.1/226.773 = -4.913.
Since —4.913 is clearly less than —1.8331, we reject H, at the 5% level.

In the previous example, if it were appropriate to use a one-tailed (right tail) test
the procedure would change as follows:

In step 1, we would take H,: u> u, = 2200.

In step 3, we would consider the upper « tail of the sampling distribution for ¢

(Student’s ¢ distribution with 9 degrees of freedom) when u = w, (i.e., the
sampling distribution when the null hypothesis is true).

In step 5, the rejection region would be values of 7> 1.8331.
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9.6 p-VALUES

The p-value is the probability of the occurrence of a value for the test statistic as ex-
treme as or more extreme than the actual observed value, under the assumption that
the null hypothesis is true. By more extreme we mean a value in a direction farther
from the center of the sampling distribution (under the null hypothesis) than what
was observed.

For a one-tailed (right-tailed) ¢ test, this statement means the probability that a
statistic 7 with a Student’s ¢ distribution satisfies 7> |¢|, where ¢ is the observed val-
ue of the test statistic. For a one-tailed (left-hand tail) ¢ test, this statement means
the probability that a statistic 7 with a Student’s ¢ distribution satisfies 7" < —|¢|,
where ¢ is the observed value of the test statistic. For a two-tailed ¢ test, it means the
probability that a statistic 7 with a Student’s ¢ distribution satisfies |7] > || (i.e., T >
|| or T <—|f|) where ¢ is the observed value of the test statistic.

Now let us now compute the two-sided p-value for the test statistic in the pig
blood loss example from Section 9.4. Recall that the standard deviation s = 717.12,
the sample mean X = 1085.9, the hypothesized value u, = 2200, and the sample size
n = 10. From this information, we see that the ¢ statistic is # = (1085.9 —
2200)/(717.12/7/10) = -1114.1/226.773 = —4.913.

To find the two-sided p-value we must compute the probability that 7>4.913 and
add the probability that 7<—4.913. This combination is equal to 2P(7 > 4.913). The
probability P(T>4.913) is the one-sided right-tail p-value; it is also equal to the one-
sided left-tail p-value, P(T <—4.913). The table of Student’s ¢ distribution shows us
that with 9 degrees of freedom, P(7'<4.781) = 0.9995. So P(T>4.781) = 0.0005.

Since P(T > 4.913) < P(T > 4.781), we see that the one-sided p-value P(T >
4.913) <0.0005; hence, the two-sided p-value is less than 0.001. This observation is
more informative than just saying that the test is significant at the 5% level. The re-
sult is so significant that even for a two-sided test, we would reject the null hypoth-
esis at the 0.1% level.

Most standard statistical packages (e.g., SAS) present p-values when providing
information on hypothesis test results, and major journal articles usually report p-
values for their statistical tests. SAS provides p-values as small as 0.0001, and any-
thing smaller is reported simply as 0.0001. So when you see a p-value of 0.0001 in
SAS output, you should interpret it to mean that the p-value for the test is actually
less than or equal to 0.0001 (sometimes it can be considerably smaller).

9.7 TYPEIAND TYPE II ERRORS

In Section 9.1, we defined the type I error « as the probability of rejecting the null
hypothesis when the null hypothesis is true. We saw that in the Neyman—Pearson
formulation of hypothesis testing, the type I error rate is fixed at a certain low level.
In practice, the choice is usually 0.05 or 0.01. In Sections 9.3 through 9.5, we saw
examples of how critical regions were defined based on the distribution of the test
statistic under the null hypothesis.
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Also in Section 9.1, we defined the type Il error as 8. The type II error is the

probability of not rejecting the null hypothesis when the null hypothesis is false. It

depends on the “true” value of the parameter under the alternative hypothesis.

For example, suppose we are testing a null hypothesis that the population mean
= wo. The type II error depends on the value of w = u; # u, under the alternative
hypothesis. In the next section, we see that the power of a test is defined as 1 — 3.
The term “power” refers to the probability of correctly rejecting the null hypothesis
when it is in fact false. Given that 8 depends on the value of w; in the context of
testing for a population mean, the power is a function of w,; hence, we refer to a
power function rather than a single number.

In sample size determination (Section 9.13), we will see that analogous to choos-
ing a width d for a confidence interval, we will select a distance 6 for |u; — p| such
that we achieve a specific high value for the power at that 8. Usually, the value for 1
— B is chosen to be 0.80, 0.90, or 0.95.

9.8 THE POWER FUNCTION

The power function depends on the significance level of a test and the sampling dis-
tribution of the test statistic under the alternative values of the population parame-
ters. For example, when a Z or ¢ statistic is used to test the hypothesis (H,) that the
population mean w equals u,, the power function equals « at u; = u, and increases
as u moves away from . The power function approaches 1 as w; gets very far
from w,. Figure 9.1 shows a plot of the power function for a population mean in the
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Figure 9.1. Power function for a test that a normal population has mean zero versus a two-sided alterna-
tive when the sample size n = 25 and the significance level a = 0.05.
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simple case when w, =0 and o is known, the sample size n = 25, and the population
distribution is assumed to be a normal distribution. In this case, Z = (X — u,)/
(a/Vn) = (X — w))/(0/5) = 5(X — u,)/o and Z has a standard normal distribution.
This distribution depends on w,; and o. We know the value of o and can take o0 =1,
recognizing that although the power depends on w, for the curve in Figure 9.1, to be
more general we would replace u; with w,/o for other values of . The power is the
probability of observing Z in the acceptance region that is P(—C < Z < C), where C
is the critical value; consequently, the power depends on the sample size and signif-
icance level through C as well as the sample size »n through the formula for Z.

Figure 9.2 displays, on the same graph used for n = 25, the comparable results
for a sample size n = 100. We see how the power function changes with increased
sample size.

9.9 TWO-SAMPLE ¢ TEST (INDEPENDENT SAMPLES WITH A
COMMON VARIANCE)

Recall from Section 8.5 the use of the appropriate ¢ statistic for a confidence inter-

val under the following circumstances: the parent populations have normal distribu-

Power Function for two sample sizes

1.0
Tz

Power

Alternative Mean

Figure 9.2. Power function for a test that a normal population has mean zero versus a two-sided alterna-
tive when the sample size n = 25, n = 100, and the significance level a = 0.05.
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tions and common variance that is unknown. In this situation, we used the pooled
variance estimate, s, calculated by the formula S? = {S2(n, — 1) + S2(n. — 1)}/[n, +
n.—2].

Suppose we want to evaluate whether the means of two independent samples se-
lected from two parent populations are significantly different. We will use a ¢ test
with s2 as the pooled variance estimate. The corresponding ¢ statistic is ¢ = {(X,—X)
= (M — p)}/[S,V(1/n) +(1/n,)]. The formula for ¢ is obtained by replacing the
common o in the formula for the two sample Z test with the pooled estimate S,. The
resulting statistic has Student’s ¢ distribution with n, + n, — 2 degrees of freedom.
This sample ¢ statistic is used for hypothesis testing. For a two-sided test the steps
are as follows:

1. State the null hypothesis H,: u, = w. versus the alternative hypothesis H;: w,
#* WU

2. Choose a significance level a = « (often we take oy = 0.05 or 0.01).

3. Determine the critical region, that is, the region of values of ¢ in the upper and
lower /2 tails of the sampling distribution for Student’s ¢ distribution with »,
+ n, — 2 degrees of freedom when u, = u, (i.e., the sampling distribution
when the null hypothesis is true).

4. Compute the 7 statistic: # = {(X, — X,) — (, — ) }/[S,V(1/n,) + (1/n,)] for the
given sample and sample sizes 7, and n., where X; is the sample mean for the
treatment group, X, is the sample mean for the control group, and S, is the
pooled sample standard deviation.

5. Reject the null hypothesis if the test statistic # (computed in step 4) falls in the
rejection region for this test; otherwise, do not reject the null hypothesis.

We will apply these steps to the pig blood loss data from Section 8.7, Table
8.1. Recall that S = {S7(n, — 1) + SX(n. — D)}/[n, + n, — 2] = {(717.12)* 9 +
(1824.27)* 9}/18, since n, = n. = 10, S, = 717.12, and S. = 1824.27. So S, =
2178241.61 and taking the square root we find S, = 1475.89. As the degrees of
freedom are n, + n, — 2 = 18, we find that the constant C from the table of the
Student’s ¢ distribution is 2.101. Applying steps 1-5 to the pig blood loss data for
a two-tailed (two-sided) test, we have:

1. State the null hypothesis H: u, = w. versus the alternative hypothesis H;: w,
F -

2. Choose a significance level a = o, = 0.05.

3. Determine the critical region, that is, the region of values of # in the upper and
lower 0.025 tails of the sampling distribution for Student’s ¢ distribution with
18 degrees of freedom when w,/u. (i.e., the sampling distribution when the
null hypothesis is true).

4. Compute the ¢ statistic: ¢ = {()_(, -X)— (- H) S,V (1/n) + (1/n,)]. We
are given that the sample sizes are n,= 10 and n. = 10, respectively. Under the
null hypothesis, u, — p, = 0 and X, - X, = 1085.9-2187.4 = —1101.5 and s,,
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the pooled sample standard deviation, is 1475.89. Since V/(1/n,) + (1/n.)] =
V2/20=vV0.1=0.316,1=-1101.5/(1475.89)0.316 = -2.362.

5. Now, since —2.362 <—C =-2.101, we reject H,,.

9.10 PAIRED ¢ TEST

Previously, we covered statistical tests (e.g., the independent groups Z test and ¢
test) for assessing differences between group means derived from independent sam-
ples. In some medical applications, we use measures that are paired; examples are
comparison of pre—post test results from the same subject, comparisons of twins,
and comparisons of littermates. In these situations, there is an expected correlation
(relationship) between any pair of responses. The paired ¢ test looks at treatment
differences in medical studies that have paired observations.

The paired ¢ test is used to detect treatment differences when measurements from
one group of subjects are correlated with measurements from another. You will
learn about correlation in more detail in Chapter 12. For now, just think of correla-
tion as a positive relationship. The paired ¢ test evaluates within-subject compar-
isons, meaning that a subject’s scores collected at an earlier time are compared with
his own scores collected at a later time. The scores of twin pairs are analogous to
within-subject comparisons.

The results of subjects’ responses to pre- and posttest measures tend to be relat-
ed. To illustrate, if we measure children’s gains in intelligence over time, their later
scores are related to their initial scores. (Smart children will continue to be smart
when they are remeasured.) When such a correlation exists, the pairing can lead to a
mean difference that has less variability than would occur had the groups been com-
pletely independent of each other. This reduction in variance implies that a more
powerful test (the paired ¢ test) can be constructed than for the independent case.
Similarly, paired ¢ tests can allow the construction of more precise confidence inter-
vals than would be obtained by using independent groups ¢ tests.

For the paired ¢ test, the sample sizes r, and n. must be equal, which is one disad-
vantage of the test. Paired tests often occur in crossover clinical trials. In such trials,
the patient is given one treatment for a time, the outcome of the treatment is mea-
sured, and then the patient is put on another treatment (the control treatment). Usu-
ally, there is a waiting period, called a washout period, between the treatments to
make sure that the effect of the first treatment is no longer present when the second
treatment is started.

First, we will provide background information about the logic of the paired ¢ test
and then give some calculation examples using the data from Tables 9.1 and 9.2.
Matching or pairing of subjects is done by patient; i.e., the difference is taken be-
tween the first treatment for patient A and the second treatment for patient A, and so
on for patient B and all other patients. The differences are then averaged over the
set of n patients.

As implied at the beginning of this section, we do not compute differences be-
tween treatment 1 for patient A and treatment 2 for patient B. The positive correla-



196 TESTS OF HYPOTHESES

tion between the treatments exists because the patient himself is the common factor.
We wish to avoid mixing patient-to-patient variability with the treatment effect in
the computed paired difference. As physicians enjoy saying, “the patient acts as his
own control.”

Order effects refer to the order of the presentation of the treatments in experi-
mental studies such as clinical trials. Some clinical trials have multiple treatments;
others have a treatment condition and a control or placebo condition. Order effects
may influence the outcome of a clinical trial. In the case in which a patient serves
as his own control, we may not think that it matters whether the treatment or con-
trol condition occurs first. Although we cannot rule out order effects, they are easy
to minimize; we can minimize them by randomizing the order of presentation of
the experimental conditions. For example, in a clinical trial that has a treatment
and a control condition, patients could be randomized to either leg of the trial so
that one-half of the patients would receive the treatment first and one-half the con-
trol first.

By looking at paired differences (i.e., differences between treatments 4 and B for
each patient), we gain precision by having less variability in these paired differ-
ences than with an independent-groups model; however, the act of pairing discards
the individual observations (there were 2n of them and now we are left with only »
paired differences). We will see that the resulting ¢ statistic will have only n — 1 de-
grees of freedom rather than the 2n — 2 degrees of freedom as in the ¢ test for differ-
ences between means of two independent samples.

Although we have achieved less variability in the sample differences, the paired
t test cuts the sample size by a factor of two. When the correlation between treat-
ments A and B is high (and consequently the variability is reduced considerably),
pairing will pay off for us. But if the observations being paired were truly indepen-
dent, the pairing could actually weaken our analysis.

A paired #-test (two-sided test) consists of the following steps:

1. Form the paired differences.

2. State the null hypothesis H: w, = . versus the alternative hypothesis H,: u,
F W (As Hy:p, = ., we also can say Hy: w,— . = 0; Hy: i, — . # 0.)

3. Choose a significance level a = « (often we take oy = 0.05 or 0.01).

4. Determine the critical region; that is, the region of values of ¢ in the upper and
lower a/2 tails of the sampling distribution for Student’s # distribution with »
— 1 degrees of freedom when u/u. (i.e., the sampling distribution when the
null hypothesis is true) and when n = n, = n...

5. Compute the ¢ statistic: # = {c_z’ — (M — ) Y[S/Vn] for the given sample and
sample size n for the paired differences, where d is the sample mean differ-
ence between groups and s, is the sample standard deviation for the paired
differences.

6. Reject the null hypothesis if the test statistic # (computed in step 4) falls in
the rejection region for this test; otherwise, do not reject the null hypothe-
sis.
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Now we will now look at an example of how to perform a paired 7 test. A strik-
ing example where the correlation between two groups is due to a seasonal effect
follows. Although it is a weather example, these kinds of results can occur easily in
clinical trial data as well. The data are fictitious but are realistic temperatures for the
two cities at various times during the year. We are considering two temperature
readings from stations that are located in neighboring cities such as Washington,
D.C., and New York. We may think that it tends to be a little warmer in Washing-
ton, but seasonal effects could mask a slight difference of a few degrees.

We want to test the null hypothesis that the average daily temperatures of the
two cities are the same. We will test this hypothesis versus the two-sided alternative
that there is a difference between the cities. We are given the data in Table 9.1,
which shows the mean temperature on the 15th of each month during a 12-month
period.

Now let us consider the two-sample ¢ test as though the data for the cities were
independent. Later we will see that this is a faulty assumption. The means for
Washington (X,) and New York (X,) equal 56.16°F and 52.5°F, respectively. Is the
difference (3.66) between these means statistically significant? We test Hy: w; — u,
= 0 against the alternative H,: u; — u, # 0, where u, is the population mean tem-
perature for Washington and u, is the population mean temperature for New York.
The respective sample standard deviations, S; and S,, equal 23.85 and 23.56. These
sample standard deviations are close enough to make plausible the assumption that
the population standard deviations are equal.

Consequently, we use the pooled variance S = {S7(n; — 1) + S3(n,~1)}/[n; + n,
—2]. In this case, 7 = [11(23.85)? + 11 (23.56)?]/22. These data yield S2 = 561.95
or S, =23.71. Now the two-sample ¢ statistic is £ = (56.16 — 52.5)/\V/561.95(2/12) =
3.66/V561.95/6 = 3.66/9.68 = 0.378. Clearly, # = 0.378 is not significant. From the
table for the ¢ distribution with 22 degrees of freedom, the critical value even for «

TABLE 9.1. Daily Temperatures in Washington and New York

Washington New York
Day Mean Temperature (°F) Mean Temperature (°F)
1 (January 15) 31 28
2 (February 15) 35 33
3 (March 15) 40 37
4 (April 15) 52 45
5 (May 15) 70 68
6 (June 15) 76 74
7 (July 15) 93 89
8 (August 15) 90 85
9 (September 15) 74 69
10 (October 15) 55 51
11 (November 15) 32 27

12 (December 15) 26 24
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=0.10 would be 1.7171. So it seems to be convincing that the difference is not sig-
nificant.

But let us look more closely at the data. The independence assumption does not
hold. We can see that temperatures are much higher in summer months than in win-
ter months for both cities. We see that the month-to-month variability is large and
dominant over the variability between cities for any given day. So if we pair tem-
peratures on the same days for these cities we will remove the effect of month-to-
month variability and have a better chance to detect a difference between cities.
Now let us follow the paired ¢ test procedure based on data from Table 9.2.

Here we see that the mean difference d is again 3.66 but the standard deviation
S; = 1.614, which is a dramatic reduction in variation over the pooled estimate of
23.71! (You can verify these numbers on your own by using the data from Table
9.2)

We are beginning to see the usefulness of pairing: ¢ = (d— (= p))(S,/NVn) =
(3.66 — 0)/(1.614/\/12) = 3.66/0.466 = 7.86. This ¢ value is highly significant be-
cause even for an alpha of 0.001 with a ¢ of 11 degrees of freedom (n —1 = 11), the
critical value is only 4.437!

This outcome is truly astonishing! Using an unpaired test with this temperature
data we were not even close to a statistically significant result, but with an appropri-
ate choice for pairing, the significance of the paired differences between the cities is
extremely high. These two opposite findings indicate how wrong one can be when
using erroneous assumptions.

There is no magic to statistical methods. Bad assumptions lead to bad answers.
Another indication that it was warmer in Washington than in New York is the fact
that the average temperature in Washington was higher for all twelve days.

In Section 14.4, we will consider a nonparametric technique called the sign test.
Under the null hypothesis that the two cities have the same mean temperatures each

TABLE 9.2. Daily Temperatures for Two Cities and Their Paired Differences

Washington New York Paired Difference
Day Mean Temperature (°F) Mean Temperature (°F) #1 —#2
1 (January 15) 31 28 3
2 (February 15) 35 33 2
3 (March 15) 40 37 3
4 (April 15) 52 45 7
5 (May 15) 70 68 2
6 (June 15) 76 74 2
7 (July 15) 93 89 4
8 (August 15) 90 85 5
9 (September 15) 74 69 5
10 (October 15) 55 51 4
11 (November 15) 32 27 5
12 (December 15) 26 24 2
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day of the year, the probability of Washington being warmer than New York would
be 0.5 on each day. In the sample, this outcome occurs 12 days in a row. According
to the sign test, the probability of this outcome under the null hypothesis is (0.50)!2
=0.00024.

Finally, let us go through the six steps for the paired ¢ test using the temperature
data:

1. Form the paired differences (the far right column in Table 9.2).

2. State the null hypothesis Hy: w; = u, or u; — i, = 0 versus the alternative hy-
pothesis H;: p; # w, or pu; — p, # 0.

3. Choose a significance level a = oy = 0.01.

4. Determine the critical region, that is, the region of values of # in the upper and
lower 0.005 tails of the sampling distribution for Student’s ¢ distribution with
n— 1 =11 degrees of freedom when u, = u, (i.e., the sampling distribution
when the null hypothesis is true) and when n = n; = n,.

5. Compute the ¢ statistic: # = {d — (u, — ) }/[S,/\/n] for the given sample and
sample size n for the paired differences, where d = 3.66 is the sample mean
difference between groups and S, = 1.614 is the sample standard deviation
for the paired differences.

6. Reject the null hypothesis if the test statistic # (computed in step 5) falls in the
rejection region for this test; otherwise, do not reject the null hypothesis. For
a ¢t with 11 degrees of freedom and « = 0.01, the critical value is 3.1058. Be-
cause the test statistic # is 7.86, we reject H,,.

9.11 RELATIONSHIP BETWEEN CONFIDENCE INTERVALS AND
HYPOTHESIS TESTS

Hypothesis tests and confidence intervals have a one-to-one correspondence. This
correspondence allows us to use a confidence interval to form a hypothesis test or to
use the critical regions defined for a hypothesis test to construct a confidence inter-
val. Up to this point, we have not needed this relationship, as we have constructed
hypothesis tests and confidence intervals independently. However, in the next sec-
tion we will exploit this relationship for bootstrap tests. With the bootstrap, it is nat-
ural to construct confidence intervals for parameters. We will use the one-to-one
correspondence between hypothesis tests and confidence intervals to determine a
bootstrap hypothesis test based on a bootstrap confidence interval (refer to Section
9.12).

The correspondence works as follows: Suppose we want to test the null hypothe-
sis that a parameter 6 = 6,, versus the alternative hypothesis that 6 # 6, at the
100a% significance level; we have a method to obtain a 100(1 — «)% confidence
interval for 6. Then we test the null hypothesis 6 = 6, as follows: If 6, is contained
in the 100(1 — )% confidence interval for 6, then do not reject Hy; if 6, lies outside
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the region, then reject H,,. Such a test will have a significance level of 100a%. By
100a% significance we mean the same thing as an « level but express « as a per-
centage.

On the other hand, suppose we have a critical region defined for the test of a null
hypothesis that 6 = 6,, against a two-sided alternative at the 100a% significance
level. Then, the set of all values of 6, that would lead to not rejecting the null hy-
pothesis form a 100(1 — a)% confidence region for 6.

As an example let us consider the one sample test of a mean with the variance
known. Suppose we have a sample of size 25 with a standard deviation of 5. The
sample mean X is 0.5, and we wish to test u = 0 versus the alternative that u # 0. A
95% confidence interval for w is then [X — 1.96 o/\/n, X + 1.960/V/n] = [0.5 —
1.96, 0.5 + 1.96] = [-1.46, 2.46], since o= 5 and Vz = 5. Thus, values of the sam-
ple mean that fall into this interval are in the nonrejection region for the 5% signifi-
cance level test based on the one-to-one correspondence between hypothesis tests
and confidence intervals. In our case with X = 0.5, we do not reject H,, because 0 is
contained in the interval The same would be true for any value in the interval. The
nonrejection region for the 5% level two-sided test contains the values of X such
that 0 lies inside the interval, and the rejection region is the set of X values such that
0 lies outside the interval, which is formed by X + 1.96 <0 or X — 1.96 > 0 or X <
—1.96 or X > 1.96 or |X] > 1.96.

Note that had we constructed the 5% two-sided test directly, using the procedure
we developed in Section 9.3, we would have obtained the same result.

Also, by taking the critical region defined by [X] > 1.96 that we obtain directly in
Section 9.3, the one-to-one correspondence gives us a 95% confidence interval [0.5
—1.96, 0.5 + 1.96] = [-1.46, 2.46], exactly the confidence interval we would get di-
rectly using the method of Section 8.4. In the formula for the two-sided test, we re-
place X with 0.5 and o/\/n with 1.0.

9.12 BOOTSTRAP PERCENTILE METHOD TEST

Previously, we considered one of the simplest forms for approximate bootstrap con-
fidence intervals, namely, Efron’s percentile method. Although there are many oth-
er ways to generate bootstrap type confidence intervals, such methods are beyond
the scope of this text. Some methods have better properties than the percentile
method. To learn more about them, see Chernick (1999), Efron and Tibshirani
(1993), or Carpenter and Bithell (2000). However, the relationship given in the pre-
vious section tells us that for any such confidence interval we can construct a hy-
pothesis test through the one-to-one correspondence principle. Here we will demon-
strate bootstrap confidence intervals for the bootstrap percentile method.

Recall that in Section 8.9 we had the following ten values for blood loss for the
pigs in the treatment group: 543, 666, 455, 823, 1716, 797, 2828, 1251, 702, and
1078. The sample mean was 1085.9. Using the Resampling Stats software, we
found (based on 10,000 bootstrap samples) that an approximate two-sided per-
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centile method 95% confidence interval for the population mean p was [727.1,
1558.9].

From this information, we can construct a bootstrap hypothesis test of the null
hypothesis that the mean w = u,, versus the two-sided alternative that w # w,. The
test rejects the null hypothesis if the hypothesized u, < 727.1 or if the hypothesized
Mo > 1558.9. We will know u, and the result depends on whether or not p, is in the
confidence interval. Recall we reject H, if w,, is outside the interval.

9.13 SAMPLE SIZE DETERMINATION FOR HYPOTHESIS TESTS

In Section 8.10, we showed you how to determine the required sample size based
on a criterion for confidence intervals, namely, to require the half-width or width of
the confidence interval to be less than a specified 6. For hypothesis testing, one can
also set up a criterion for sample size. Recall from Section 9.8 that we defined and
illustrated in a particular example the power function for a two-sided test. We
showed that if the level of a two-sided test (such as for a population mean or mean
difference) is «, then the power of the test at the null hypothesis value (e.g., u, for a
population mean) is equal to « and increases as we move away from the null hy-
pothesis value.

We learned that the power function is symmetric about the null hypothesis value
and increases to 1 as we move far away from that value. We also saw that when the
sample size is increased, the power function increases rapidly. This information
suggests that we could specify a level of power (e.g., 90%) and a separation 6 such
that for a true mean u satisfying |u — ol > 6, the power of the test at that value of u
is at least 90%.

For a given 6, this will not be achieved for small sample sizes; however, as the
sample size increases there will be eventually a minimum value » at which the pow-
er will exceed 90% for the given 6. Various software packages including nQuery
Advisor, PASS 2000, and Power and Precision enable you to calculate the required
n or to determine the power that can be achieved at that 6 for a specified 7.

In the Tendril DX clinical trial, Chernick and associates calculated the difference
between the treatment and control group means using an unpaired ¢ test; the sample
size was n, = 3n,, where n, was the sample size for the treatment group and n,. was
the sample size for the control group. In this problem, Chernick took & = 0.5 volts,
set the power at 80%, and assumed a common o tested at the 0.10 significance lev-
el for a two-sided test. The resulting calculations required a sample size of 99 for
the treatment group and 33 for the control group, leading to a total sample size of
132. Note that if instead we required #, = n,, then the required value for #, is 49 for
a total sample size of 98. Table 9.3 shows the actual table output from nQuery. In
most cases, you can rely on the software to give you the solution. In some cases,
there is not a simple formula, but in other cases simple sample size formulas can be
obtained similar to the ones we derived in Chapter 8 for fixed-width confidence in-
tervals.
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TABLE 9.3. nQuery Advisor 4.0 Table for 3:1 and 1:1 Sample Size
Ratios for Tendril DX Trial Design

Test significance level 0.100 0.100
1 or 2 sided test? 2 2
Group 1 mean w, 1.000 1.000
Group 2 mean u, 0.500 0.500
Difference in means, w, — u, 0.500 0.500
Common standard deviation, o 0.980 0.980
Effect size, 6= |, — wo|/o 0.510 0.510
Power (%) 80 80
n 33 49
n, 99 49
Ratio: n,/n, 3.000 1.000
N=n,+n, 132 98

9.14 SENSITIVITY AND SPECIFICITY IN MEDICAL DIAGNOSIS

Screening tests are used to identify patients who should be referred for diagnostic
evaluation. The validity of screening tests is evaluated by comparing their screening
results with those obtained from a “gold standard.” The gold standard is the defini-
tive diagnosis for the disease. However, it should be noted that screening is not the
same thing as diagnosis; it is a method applied to a population of apparently healthy
individuals in order to identify those who may have unrecognized or subclinical
conditions. In designing a screening test, physicians need to identify a particular
cutoff measurement from a set of measurements in order to discriminate between
healthy and “diseased” persons.

These measurements for healthy individuals can have a range of normal values
that overlap with values for patients having the disease. Also, the very nature of
measurement leads to some amount of error. For some illnesses, there is no ideal
screening measure that perfectly discriminates between the patients who are free
from disease and those with the disease. As a result, there is a possibility that the
screening test will classify a patient with a disease as normal and a patient without
the disease as having the disease.

An example is blood glucose screening test for diabetes. Blood sugar measure-
ments for diabetic and normal persons form two overlapping curves. Some high
normal blood sugar values overlap the lower end of the distribution for diabetic pa-
tients. If we declare that a blood glucose value of 120 should form the cutoff be-
tween normal and diabetic persons, we will unwittingly include a few nondiabetic
persons with diabetic individuals.

If we formulated the screening test as a statistical hypothesis testing problem, we
would see that these two types of error could be the type I and type II errors for the
hypothesis test. In medical diagnosis, however, we use special terminology. Refer to
Table 9.4 and the discussion that follows the table for the definitions of these terms.

Suppose we applied a screening test to » patients and out of the n patients ob-
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TABLE 9.4. Sensitivity and Specificity in Diagnostic Testing

True Condition of the Patient
According to the Gold Standard

Test Results Diseased Not Diseased Total
Disease Present a b atb=s
Disease Absent c d ctd=n-s
Total atc=m B+d=n-m at+tbtct+td=n

tained the following outcomes. The test screens s of the patients as positive (indicat-
ing the presence of the disease) and n — s as negative (indicating the absence of the
disease). In reality, if we knew the truth (according to the gold standard or other-
wise), there are m patients with the disease and » — m patients without the disease.

The s patients diagnosed with the disease include a patients who actually have it
and b patients who do not. So s = a + b. Now, of the m patients who actually have
the disease, a were diagnosed with it from the test and ¢ were not. So m =a + c.
This leaves d patients who do not have the disease and are diagnosed as not having
it Sod=n—-s—c=n—s—m+ a. The results are summarized in Table 9.4.

The off-diagonal terms b and ¢ represent the number of “false positives” and
“false negatives,” respectively. The ratio b/n is an estimate of the probability of a
false positive, and ¢/n is an estimate of the probability of a false negative.

Also of interest are the conditional error rates, estimated by b/(n — m) = b/(b + d)
and ¢/m = ¢/(c + a), which represent, respectively, the conditional probability of a
positive test result given that the patient does not have the disease and the condition-
al probability of a negative test result given that the patient does have the disease.

Related to these conditional error rates are the conditional rates of correct classi-
fication known as specificity and sensitivity, the definitions of which follow.

Sensitivity is the probability that the screening test identifies the patient as hav-
ing the disease (a positive test result) given that he or she does in fact have the dis-
ease. The name comes about because a test that has a high probability of correct de-
tection is thought to be highly sensitive. An estimate of sensitivity from Table 9.4 is
alla +c¢)=1-cl(a +c)=1-c/m. This is 1 minus the conditional probability of a
false positive.

Specificity is the probability that a screening test declares the patient well (a neg-
ative test result), given that he or she does not have the disease. From Table 9.4,
specificity is estimated by d/(b + d) =1 - b/(b + d) =1 — b/(n — m). This is 1 minus
the conditional probability of a false negative.

Ideally, a screening test should have high sensitivity and high specificity; i.e., the
specificity and the sensitivity should be as close to 1 as possible. However, mea-
surement error and imperfect discriminators make it impossible for either value to
be 1. Recall that in hypothesis testing if we are given the test statistic for a fixed
sample size, we can change the type I error by changing the cutoff value that deter-
mines the critical region. But any change that decreases the type I error will in-
crease the type II error, so we have a trade-off between the two error rates. The
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same trade-off is true regarding the conditional error rates; consequently, increas-
ing sensitivity will decrease specificity and vice versa. For a further discussion of
screening tests, consult Friis and Sellers (1999).

9.15 META-ANALYSIS
Two problems often occur regarding clinical trials:

1. Often, clinical studies do not encompass large enough samples of patients to
reach definitive conclusions.

2. Two or more studies may have conflicting results (possibly because of type I
and type II errors).

A technique that is being used more and more frequently to address these problems
is meta-analysis. Meta-analyses are statistical techniques for combining data, sum-
mary statistics, or p-values from various similar tests to reach stronger and more
consistent conclusions about the results from clinical trials and other empirical
studies than is possible with a single study.

Care is required in the selection of the trials to avoid potential biases in the
process of combining results. Several excellent books address these issues, for ex-
ample, Hedges and Olkin (1985). The volume edited by Stangl and Berry (2000)
presents several illustrations that use the Bayesian hierarchical modeling approach.
The hierarchical approach puts a Bayesian prior distribution on the unknown para-
meters. This prior distribution will depend on other unknown parameters called hy-
perparameters. Additional prior distributions are specified for the hyperparameters,
thus establishing a hierarchy of prior distributions. It is not important for you to un-
derstand the Bayesian hierarchical approach, but if you are interested in the details,
see Stangl and Berry (2000). We will define prior and posterior distributions and
Bayes rule in the next section. Bayesian hierarchical models are also used in an in-
ferential approach called the empirical Bayes method. You might encounter this ter-
minology if you study some of the literature.

In this section, we will show you two real-life examples in which Chernick used
a particular method, Fisher’s test, which R. A. Fisher (1932) and K. Pearson (1933)
developed for combining p-values in a meta-analysis. These illustrations will give
you some appreciation of the value of meta-analysis and will provide you with a
simple tool that you could use, given an appropriate selection of studies.

The rationale for Fisher’s test is as follows: The distribution theory for a test sta-
tistic proposed that under the null hypothesis each study would have a p-value that
comes from a uniform distribution on the interval [0, 1]. Denote a particular p-value
by the random variable U. Let L also refer to a random variable. Now consider the
transformation L = -2 In(U) where In is the logarithm to the base e. It can be shown
mathematically that the random variable L has a chi-square distribution with 2 de-
grees of freedom. (You will encounter a more general discussion of the chi-square
distribution in Chapter 11.)
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Suppose we have k independent trials to be combined and U,, U,, Us, ..., U,
are the random variables denoting the p-values for the & independent trials. Now
consider the variable L, = -2 In(U,, U,, Us, ..., Uy) = =2 In(U;) — 2 In(U,) —
2 In(Us) — . .. = 2 In(Uy); then L, is the sum of k independent chi-square random
variables each with 2 degrees of freedom. It is known that the sum of independent
chi-square random variables is a chi-square random variable with degrees of free-
dom equal to the sum of the degrees of freedom for the individual chi-square ran-
dom variables in the summation. Therefore, L, is a chi-square variable with 2k de-
grees of freedom.

The chi-square with 2k degrees of freedom is, therefore, the reference distribu-
tion that holds under the null hypothesis of no effect. We will see in the upcoming
examples that the alternative of a significant difference should produce p-values
that are concentrated closer to zero rather than being uniformly distributed. Lower
values of the U’s lead to higher values of L,. So we select a cutoff based on the up-
per tail of the chi-square with 2k degrees of freedom. The critical value is deter-
mined, of course, by the significance level a that we specify for Fisher’s test.

In the first example, one of us (Chernick) was consulting for a medical device
company that manufactured an instrument called a cutting balloon for use in angio-
plasty procedures. The company conducted a controlled clinical trial in Europe and
in the United States to show a reduction in restenosis rate for the cutting balloon an-
gioplasty procedure over conventional balloon angioplasty. Other studies indicated
that conventional angioplasty had a restenosis rate near 40%.

The manufacturer had seen that procedures with the cutting balloon were achiev-
ing rates in the 20%—25% range. They powered the trial to detect at least a 10% im-
provement (i.e., reduction in restenosis). However, results were somewhat mixed,
possibly due to physicians’differing angioplasty practices and differing patient se-
lection criteria in the various countries.

Example 8.5.2 in Chernick (1999) presents the clinical trial results using the
bootstrap for a comparative country analysis. The results of the meta-analysis, not
reported there, are given in Table 9.5. Countries A, B, C, and D are European coun-
tries, and country E is the United States.

The difficulty for the manufacturer was that although the rate of 22% in the Unit-
ed States was statistically significantly lower than the 40% that is known for con-

TABLE 9.5. Balloon Angioplasty Restenosis Rates

by Country
Restenosis Rate
Country % (failures/# of patients)
A 40% (18/45)
B 41% (58/143)
C 29% (20/70)
D 29% (51/177)
E 22% (26/116)
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ventional balloon angioplasty, the values in countries 4 and B were not lower, and
the combined results for all countries were not statistically significantly lower than
40%. Some additional statistical analyses gave indications about variables that ex-
plained the differences. These explanations led to hypotheses about the criteria for
selection of patients.

However, these data were not convincing enough for the regulatory authorities
to approve the procedure without some labeling restrictions on the types of patients
eligible for it. The procedure did not create any safety issues relative to convention-
al angioplasty. The company was aware of several other studies that could be com-
bined with this trial to provide a meta-analysis that might be more definitive. Cher-
nick and associates conducted the meta-analysis using Fisher’s method for
combining p-values.

In the analysis, Chernick considered six peer-reviewed studies of the cutting bal-
loon along with the combined results for the clinical trial already mentioned (re-
ferred to as GRT). In the latter study, sensitivity analyses also were conducted re-
garding the choice of studies to include with the GRT. The other six studies are
referred to by the name of the first listed author of each study. (Refer to Table 9.6.)

The variable CB ratio refers to the restenosis rate for the cutting balloon, where-
as PTCA ratio is the corresponding restenosis rate for conventional balloon-angio-
plasty-treated patients. Table 9.6 shows the results for these studies and the com-
bined Fisher test. Here k£ = 7 (the number of independent trials), so the reference
chi-square distribution has 14 (2k) degrees of freedom.

The table provides the individual p-values (the U’s for the Fisher chi-square test)
that are based on a procedure called Fisher’s exact test for comparing two propor-
tions (see Chapter 11). Note that we have two test procedures here; both are called
Fisher’s test because they were devised by the same famous statistician, R. A. Fish-
er. However, there is no need for confusion. Fisher’s exact test is applied in each
study to compare the restenosis rates and calculate the individual p-values. Then we
use these seven p-values to compute Fisher’s chi-square statistic in order to deter-
mine their combined p-value. Note that the most significant test was Suzuki with a
p-value of 0.001, and the least significant was the GRT itself with a p-value equal to
0.7455. However, the combined p-value is a convincing 0.000107.

TABLE 9.6. Meta-Analysis for Combined p-values in Balloon Angioplasty Studies

Study CB Ratio PTCA Ratio p-Value -2 In(U)
GRT 173/551 170/559 0.7455 0.5874
Molstad 5/30 8/31 0.5339 1.2551
Inoue 7/32 13/32 0.1769 3.4643
Kondo 22/95 40/95 0.0083 9.5830
Ergene 14/51 22/47 0.0483 6.0606
Nozaki 26/98 40/93 0.022 7.6334
Suzuki 104/357 86/188 0.001 13.8155

Combined — — 0.000107 42.3994
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TABLE 9.7. Comparison of Blood Loss Studies with Combined Meta-Analysis

Name Test # p-Value -2 In(p)

Lynn_01 1 0.44 1.641961

Lynn_02 2 0.029 7.080919

Martinowitz_01 3 0.0947 4.714083

Schreiber_01 4 0.371 1.983106

Scheiber_02 5 0.0856 491614
Total 20.33621

Combined p-value 0.026228379

In the next example, we look at animal studies of blood loss in pigs when com-
paring the use of Novo Nordisk’s clotting agent NovoSeven® with conventional
treatment. Three investigators performed five studies; the results of the individual
tests for mean differences and Fisher’s chi-square test are given in Table 9.7.

It is interesting to note here that although in all studies we used the Wilcoxon test
for differences, it does not matter what tests are used to obtain the individual p-val-
ues. All we need is that the individual p-values have a uniform distribution under
the null hypothesis and be independent of the other tests. Generally, these condi-
tions are met for a large variety of parametric and nonparametric tests. We could
have mixed ¢ tests with Wilcoxon or with any other test of the null hypotheses.

9.16 BAYESIAN METHODS

The Bayesian paradigm provides an approach to statistical inference that is differ-
ent from the methods we have considered thus far. Although the topic is not com-
monly taught in introductory statistical courses, we believe that Bayesian methods
deserve coverage in this text. Despite the fact that the basic idea goes back to
Thomas Bayes’ treatise written more that 200 years ago, the use of the Bayesian
idea as a tool of inference really took place mostly in the 20th century. There are
now many books on the subject, even though it was not previously in favor among
mainstream statisticians.

In the 1990s, Bayesian methods had a rebirth in popularity with the advent of
fast computational techniques (especially the Markov chain Monte Carlo approach-
es), which allowed computation of general posterior probability distributions that
had been difficult or impossible to compute (or approximate) previously. Posterior
distributions will be defined shortly. Bayesian hierarchical methods now are being
used in medical device submissions to the FDA.

A good introductory text that provides the Bayesian prospective was authored by
Berry (1996). Bayesian hierarchical models also are used as a method for doing
meta-analyses (as described from the frequentist approach in the previous section).
An excellent treatment of use of meta-analyses (Bayesian approaches) in many
medical applications is given in Stangl and Berry (2000), which we mentioned in
the previous section.
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Basically, in the Bayesian approach to inference, the unknown parameters are
treated as random quantities with probability distributions to describe their uncer-
tainty. Prior to collecting data, a distribution called the prior distribution is chosen
to describe our belief about the possible values of the parameters.

Although Bayesian analysis is simple when there is only one parameter, often
we are interested in more than one parameter. In addition, one or more nuisance pa-
rameters may be involved, as is the case in frequentist inference about a mean when
the variance is unknown. In this instance, the mean is the parameter of interest and
the variance is a nuisance parameter. In frequentist analysis, we estimate the vari-
ance from the data and use it to form a 7 statistic whose frequency distribution does
not depend on the nuisance parameter. In the Bayesian approach, we determine a
bivariate prior distribution for the mean and variance; we use Bayes’ rule and the
data to construct a bivariate posterior distribution for the mean and variance; then
we integrate over the values for the variance to obtain a marginal posterior distribu-
tion for the mean.

Bayes’ rule is simply a mathematical formula that says that you find the posteri-
or distribution for a parameter 6 by taking the prior distribution for 6 and multiply-
ing it by the likelihood for the data given a specified value of 6. For the mean, this
likelihood can be regarded as the sample distribution for X when the population
variance is assumed to be known and the population mean is a specified u. We
know by the central limit theorem that this distribution is approximately normal
with mean p and variance o/n, where o is the known variance and » is the sample
size. The density function for this normal distribution is the likelihood. We multiply
the likelihood by the prior density for w to get the posterior density, called the pos-
terior density of u given the sample mean X.

There is controversy among the schools of statistical inference (Bayesian and fre-
quentist). With respect to the Bayesian approach, the controversy involves the treat-
ment of u as a random quantity with a prior distribution. In the discrete case, it is a
simple law of conditional probabilities that if X'and Y are two random quantities, then
PX=x]Y=y]l=P[X=x, Y=y]/P[Y =y]=P[Y =y X =x]P[X =x]/P[Y = y]. Now,
P[Y =y]= 3, P[Y =y, X=x]. This leads to Bayes’ rule, the uncontroversial mathe-
matical result that P[X = x|Y = y] = P[Y = y|X = x]P[X = x]/2, P[Y =y, X =x].

In the problem of a population mean, the Bayesian followers take X to be the
population mean and Y the sample estimate. The left-hand side of the above equa-
tion {P[X = x| Y = y]} is the posterior distribution (or density) for X, and the right-
hand side is the appropriately scaled likelihood for Y, given X (P[Y = y|X = x]/2,
P[Y =y, X=x]) multiplied by the prior distribution (or density) for X at x (namely,
P[X = x]). The formula applies for continuous or discrete random quantities but is
derived more easily in the discrete case. The mathematics cannot be disputed, but
one can question philosophically the existence of a prior distribution for X when X
is an unknown parameter of a probability distribution.

Point estimates of parameters usually are obtained by taking the mode of the
posterior distribution (but means or medians also can be used). The analog to the
confidence interval is called a credible region and is obtained by finding points a
and b such that the posterior probability that the parameter w falls in the interval [a,
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b] is set at a value such as 0.95. Points @ and b are not unique and generally are cho-
sen on grounds of symmetry. Sometimes the points are selected optimally in order
to make the width of the interval as short as possible.

For hypothesis testing, one constructs an odds ratio for the alternative hypothesis
relative to the null hypothesis as a prior distribution and then applies Bayes’ rule to
construct a posterior odds ratio given the test data. That is, we have a distribution
for the ratio of the probability that the alternative is true to the probability that the
null hypothesis is true. Before collecting the data, one specifies how large this ratio
should be in order to reject the null hypothesis. See Berry (1996) for more details
and examples.

Markov chain Monte Carlo methods now have made it computationally feasible
to choose realistic prior distributions and solve hierarchical Bayesian problems.
This development has led to a great deal of statistical research using the Bayesian
approach to solve problems. Most researchers are using the software Winbugs and
associated diagnostics to solve Bayesian problems. Developed in the United King-
dom, this software is free of charge. See Chapter 16 for details on Winbugs.

9.17 GROUP SEQUENTIAL METHODS

In the hypothesis testing problems that we have studied, the critical value of the test
statistic and the power of the test are based on predetermined sample sizes. In some
clinical trials, the sample size may not be fixed but allowed to be determined as the
data are collected. When decisions are made after each new sample, such proce-
dures are called sequential methods. More practical than making decisions after
each new sample is to allow decisions to be made in steps as specified groups of
samples are collected.

The statistical theory that underlies these techniques was developed in Great
Britain and the United States during World War II. It was used extensively in quali-
ty assurance testing during the war. The goal was to waste as little ammunition as
possible during testing.

In clinical trials, group sequential methods are used to stop trials early for either
lack of efficacy or for safety reasons, or if medication is found to be highly effec-
tive. Sequential methods have advantages over fixed-sample-size trials in that they
can lead to trials that tend to have smaller sample sizes than their fixed-sample-size
counterparts. Since the actual sample size is unknown at the beginning of the trial,
we can determine only a mean or a distribution of possible sample sizes that could
result from the outcome of the trial.

Another reason for taking such a stepwise approach is that we may not have a
good estimate of the population variances for the data prior to the trial. The accrual
of some data enables us to estimate unknown parameters such as these variances;
these data help us to determine more accurately the sample size we really need. If a
bad initial guess in a fixed sample size trial gives too small a variance, we will have
less power than we had planned for. On the other hand, if we conservatively overes-
timate the variance, our fixed sample size test will use more samples than we actu-
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ally need and thus cost more than is really necessary. Two-stage sampling and
group sequential sampling provide methodology to overcome such problems.

In recent years, statistical software has been developed to design group sequen-
tial trials. EaSt by Cytel, S + SeqTrial by Insightful Corporation (producers of
Splus), and PEST by John Whitehead are representative packages that are discussed
in Chapter 16. Among the texts that describe sequential and group sequential meth-
ods, one of the best recent ones is by Jennison and Turnbull (2000).

9.18 MISSING DATA AND IMPUTATION

In the real world of clinical trials, protocols sometimes are not completed, or pa-
tients may drop out of the trial for reasons of safety or for obvious lack of efficacy.
Loss of subjects from follow-up studies sometimes is called censoring. The missing
data are referred to as censored observations. Dropout creates problems for statisti-
cal inference, hypothesis testing, or other modeling techniques (including analysis
of variance and regression, which are covered later in this text). One approach,
which ignores the missing data and does the analysis on just the patients with com-
plete data, is not a good solution when there is a significant amount of missing data.

One problem with ignoring the missing data is that the subset of patients consid-
ered (called completers) may not represent a random sample from the population. In
order to have a representative random sample, we would like to know about all of
the patients who have been sampled. Selection bias occurs when patients are not
missing at random. Typically, when patients drop out, it is because the treatment is
not effective or there are safety issues for them.

Many statistical analysis tools and packages require complete data. The com-
plete data are obtained by statistical methods that use information from the avail-
able data to fill in or “impute” values to the missing observations. Techniques for
doing this include: (1) last observation carried forward (LOCF), (2) multiple impu-
tation, and (3) techniques that model the mechanism for the missing data.

After imputation, standard analyses are applied as if the imputed data represent-
ed real observations. Most techniques attempt to adjust for bias, and some deal with
the artificial reduction in variance of the estimates. The usefulness of the methods
depends greatly on the reasonableness of the modeling assumptions about how the
data are missing. Little and Rubin (1987) provide an authoritative treatment of the
imputation approaches and the statistical issues involved.

A second problem arises when we ignore cases with partially censored data: a
significant proportion of the incomplete records may have informative data even
though they are incomplete. Working only with completers throws out a lot of po-
tentially useful data.

In a phase II clinical study, a pharmaceutical company found that patient dropout
was a problem particularly at the very high and very low doses. At the high doses,
safety issues relating to weight gain and lowering of white blood cell counts caused
patients to drop out. At the low doses, patients dropped out because the treatment
was ineffective.
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In this case, the reason for missing data was related to the treatment. Therefore,
some imputation techniques that assume data are missing in a random manner are
not appropriate. LOCF is popular at pharmaceutical companies but is reasonable
only if there is a slow trend or no trend in repeated observations over time. If there
is a sharp downward trend, the last observation carried forward would tend to over-
estimate the missing value. Similarly, a large upward trend would lead to a large
underestimate of the missing value. Note that LOCF repeats the observation from
the previous time point and thus implicitly assumes no trend.

Even when there is no trend over time, LOCF can grossly underestimate the
variability in the data. Underestimation of the variability is a common problem for
many techniques that apply a single value for a missing observation. Multiple impu-
tation is a procedure that avoids the problem with the variance but not the problem
of correlation between the measurement and the reason for dropout.

As an example of the use of a sophisticated imputation technique, we consider
data from a phase II study of patients who were given an investigational drug. The
study examined patients’ responses to different doses, including any general health
effects. One adverse event was measured in terms of a laboratory measurement and
low values led to high dropouts for patients. Most of these dropouts occurred at the
higher doses of the drug.

To present the information on the change in the median of this laboratory mea-
surement over time, the statisticians used an imputation technique called the incre-
mental means method. This method was not very reliable at the high doses; there
were so few patients in the highest dose group remaining in the study at 12 weeks
that any estimate of missing data was unreliable. All patients showed an apparent
sharp drop that might not have been real. Other methods exaggerated the drop even
more than the incremental means method. The results are shown in Figure 9.3. The
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Figure 9.3. Laboratory measurements (median over time) imputed.
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groups are labeled placebo and from A to E in order of increasing dose. The figure
shows that laboratory measurements apparently remained stable over time in four
of the treatment groups in comparison to the placebo group, with the exception of
the highest dose group (Group E), which showed an apparent decline. However, the
decline is questionable because of the small number of patients in that group who
were observed at 12 weeks.

9.19 EXERCISES

9.1 The following terms were discussed in Chapter 9. Give definitions of them in
your own words:

. Hypothesis test

. Null hypothesis

. Alternative hypothesis

Type I error

Type II error

p-value

. Critical region

. Power of a test

. Power function

. Test statistic

. Significance level
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9.2 Chapters 8 and 9 discussed methods for calculating confidence intervals and
testing hypotheses, respectively. In what manner are parameter estimation
and hypothesis testing similar to one another? In what manner are they differ-
ent from one another?

9.3 In a factory where he conducted a research study, an occupational medicine
physician found that the mean blood lead level of clerical workers was 11.2.
State the null and alternative hypotheses for testing that the population mean
blood lead level is equal to 11.2. What is the name for this type of hypothesis
test?

9.4 Using the data from Exercise 9.3, state the hypothesis set (null and alternative
hypotheses) for testing whether the population mean blood lead level exceeds
11.2. What is the name for this type of hypothesis test?

9.5 In the example cited in Exercise 9.3, the physician measures the blood lead
levels of smelter workers in the same factory and finds their mean blood lead
level to be 15.3. State the hypothesis set (null and alternative hypotheses) for
testing whether the mean blood lead level of clerical workers differs from that
of smelter workers.
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Using the data from Exercise 9.5, state the hypothesis set (null and alternative
hypotheses) for testing whether the mean blood lead level of smelter workers
exceeds that of clerical workers.

The Orange County Public Health Department was concerned that the mean
daily fecal coliform level in a particular month at Huntington Beach, Califor-
nia, exceeded a safe level. Let us call this level “a.” State the appropriate hy-
pothesis set (null and alternative) for testing whether the mean coliform level
exceeded a safe standard.

Suppose we would like to test the hypothesis that mean cholesterol levels of
residents of Kalamazoo and Ann Arbor, Michigan, are the same. We know
that both populations have the same variance. State the appropriate hypothe-
sis set (null and alternative). What test statistic should be used?

Consider a sample of size 5 from a normal population with a variance of 5
and a mean of zero under the null hypothesis. Find the critical values for a
0.05 two-sided significance test of the mean equals zero versus the mean dif-
fers from zero.

Use the test in Exercise 9.9 (i.e., critical values) to determine the power of the
test when the mean is 1.0 under the alternative hypothesis, the variance is 5,
and the sample size is 5.

Again use the test in Exercise 9.9 to determine the power when the mean is
1.5 under the alternative hypothesis and the variance is again 5.

We suspect that the average fasting blood sugar level of Mexican Americans

is 108. A random sample of 225 clinic patients (all Mexican American) yields

a mean blood sugar level of 119 (S? = 100). Test the hypothesis that u = 108.

a. What is the hypothesis set for a two-tailed test?

b. Find the estimated s.e.m.

c. Find the Z statistic.

d. What decision should we make, i.e., reject or fail to reject H, at the o =
0.05 level; reject or fail to reject H,, at the o =0.01 level?

e. What type of test is this: exact or approximate?

In the previous exercise there were two possible outcomes; reject the null hy-
pothesis or fail to reject the null hypothesis. Explain in your own words what
is meant by these outcomes.

Test the hypothesis that a normally distributed population has a mean blood
glucose level of 100 (o2 = 100). Suppose we select a random sample of 30 in-
dividuals from this population (X = 98.1, $? = 126).
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What is the hypothesis set (null and alternative) for a two-tailed test?
Find the estimated s.e.m.

Find the Z statistic.

What decision should we make, i.e., reject or fail to reject H, at the @ =
0.05 level; reject or fail to reject Hy at the @ = 0.01 level?

e. What type of test is preferable to run in this situation, exact or approxi-
mate? Explain your answer.

o op

Describe the differences between a one-tailed and a two-tailed test. Give ex-
amples of when it would be appropriate to use a two-tailed test and when it
would be appropriate to use a one-tailed test.

Redo Exercise 9.14 but use a one-tailed (left-tail) test.

Recent advances in DNA testing have helped to confirm guilt or innocence in

many well-publicized criminal cases. Let us consider the DNA test results to

be the gold standard of guilt or innocence and a jury trial to be the test of a

hypothesis. What types of errors are committed in the following two situa-

tions?

a. The jury convicts a person of murder who later is found to be innocent by
DNA testing.

b. The jury exonerates a person who later is found to be guilty by DNA test-
ing.

Find the area under the #-distribution between zero and the following values:
2.62 with 14 degrees of freedom

—2.85 with 20 degrees of freedom

3.36 with 8 degrees of freedom

2.04 with 30 degrees of freedom

—2.90 with 17 degrees of freedom

2.58 with 1000 degrees of freedom

,0e 0 o

Find the critical values for ¢ that correspond to the following:
a. n=12, a=0.05 one-tailed (right)

n=12, a=0.01 one-tailed (right)

n =19, a = 0.05 one-tailed (left)

n=19, a=0.05 two-tailed

n =28, a=0.05 one-tailed (left)

n=41, a=0.05 two-tailed

n=2_8, a=0.10 two-tailed

n=201, «=0.001 two-tailed

50 -0 a0 o

Consider the paired ¢ test that was used with the data in Table 9.1, what
would the power of the test be if the alternative is that the mean temperature
differs by 3 degrees between the cities? What is the power at a difference of 5
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degrees? Why does the power depend on the assumed true difference in
means?

Suppose you are planning another experiment like the one in Exercise 9.20.
Based on that data: (1) you are willing to assume that the standard deviation
of the difference in means is 1.5°F, and (2) you anticipate that the average
temperature in New York tends to be 3°F lower than the corresponding tem-
perature in Washington on the same day.

a. For such a one-sided paired #-test test, how many test days do you need to

obtain 95% power at the specified alternative?
b. How many do you need for 99% power?
¢. How many do you need for 80% power?

What is a meta-analysis? Why are meta-analyses performed?

What is Bayes’ theorem? Define prior distribution. What is a posterior distri-
bution?

How do Bayesians treat parameters? How do frequentists treat parameters?
Are the two approaches different from one another?

Why can missing data be a problem in data analysis? What is imputation?

Define sensitivity and specificity. How do they relate to the type I and type I1
errors in hypothesis testing?

Here are some questions about hypothesis testing:

a. Describe the one sample test of a mean when the variance is unknown and
when the variance is known.

b. Describe the use of a two-sample ¢ test (common variance estimate).

c. Describe when it is appropriate to use a paired ¢ test.
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CHAPTER 10

Inferences Regarding Proportions

A misunderstanding of Bernoulli’s theorem is responsible for one
of the commonest fallacies in the estimation of probabilities, the
fallacy of the maturity of chances. When a coin has come down
heads twice in succession, gamblers sometimes say that it is more
likely to come down tails next time because “by the law of aver-
ages”’ (whatever that may mean) the proportion of tails must be

brought right some time.
—W. Kneale Probability and Induction, p. 140

10.1 WHY ARE PROPORTIONS IMPORTANT?

Chapter 9 covered statistical inferences with variables that represented interval or
ratio-level measurement. Now we will discuss inferences with another type of vari-
able—a proportion, which was introduced in Chapter 5. Let us review some of the
terminology regarding variables, including a random variable, continuous and dis-
crete variables, and binomial variables.

A random variable is a type of variable for which the specific value of each ob-
servation is determined by chance. For example, the systolic blood pressure mea-
surement for each patient is a random value. Variables can be categorized further as
continuous or discrete. Continuous variables can have an infinite number of values
within a specified range. For example, weight is a continuous variable because it al-
ways can be measured more precisely, depending on the precision of the measure-
ment scale used. Discrete variables form data that can be arranged into specific
groups or sets of values, e.g., blood type or race.

Bernoulli variables are discrete random variables that have only two possible
values, e.g., success or failure. The binomial random variable is the number of suc-
cesses in 7 trials. It can take on integer values from 0 to »n. Let n = the number of ob-
jects in a sample and p = the population proportion of a binomial characteristic, also
known as a “success,” i.e., the proportion of successes; then, 1 — p = the proportion
of failures. There are numerous examples of medical outcomes that represent bino-
mial variables. Also, sometimes it is convenient to create a dichotomy from a con-
tinuous variable. For example, we could look at the proportion of diabetic patients

Introductory Biostatistics for the Health Sciences, by Michael R. Chernick 217
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with hemoglobin A1C measurements above 7.5% versus the proportion with hemo-
globin A1C below 7.5%.

Proportions are very important in medical studies, especially in research that uses
dichotomous outcomes such as dead or alive, responding or not responding to a drug,
or survival/nonsurvival for 5 years after treatment for a disease. Another example is
the use of proportions to measure customer or patient satisfaction, for measures that
have dichotomous responses: satisfied versus dissatisfied, yes/no, agree/disagree.

For example, a manufacturer of drugs to treat diabetes studied patients, physi-
cians and nurses to see how well patients complied with their prescribed treatment
and to see how well they understood the chronic nature of the disease. For this sur-
vey, proportions of patients who gave certain responses in particular subgroups of
the population were of primary interest. To illustrate, the investigators queried sub-
jects as to complications from type II diabetes. Respondents’ knowledge about each
type of complication—renal disease, retinopathy, peripheral neuropathy—was
scored according to a yes/no format.

At medical device companies, the primary endpoint may be the success of a par-
ticular medical or surgical procedure. The proportion of patients with successful out-
comes may be a primary endpoint and that proportion for the treatment group may be
compared to a proportion for a control group (i.e., a group that receives either a place-
bo no treatment, or a competitor’s treatment). The groups receiving the treatment
from a sponsoring company are generally referred to as the treatment groups and the
group receiving the competitor’s treatment are called the active control groups. The
term active control distinguishes them from control groups that receive placebo.

The sample proportion of successes is the number of successes divided by the
number of patients who are treated. If we denote the total number of successes by S,
then the estimated proportion p = S/n, where n is the total number of patients treat-
ed. This proportion in a clinical trial can be viewed as an estimate of a probability,
namely, the probability of a success in the patient population being sampled. De-
tailed examples from clinical trials will be discussed later in this chapter.

The binomial model is usually appropriate for inferences that involve the use of
clinical trial outcomes expressed as proportions. We can assume that patients have
been selected randomly from a population of interest. We can view the success or
failure of each patient’s treatment as the result of a Bernoulli trial with success prob-
ability equal to the population success probability p. In Chapter 5, a Bernoulli distri-
bution was defined as a type of probability distribution associated with two mutually
exclusive and exhaustive outcomes. Each patient can be viewed as being independent
of the other patients. As we discussed in Section 5.6, the sample number of success-
es out of n patients then has a binomial distribution with parameters » and p.

10.2 MEAN AND STANDARD DEVIATION FOR THE
BINOMIAL DISTRIBUTION

In Chapter 4, we discussed the mean and variance of a continuous variable (u, o2
and X, §?) for the parameters and their respective sample estimates. It is possible to
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compute analogs for a dichotomous variable. As shown in Chapter 5, the binomial
distribution is used to describe the distribution of dichotomous outcomes such as
heads or tails or “successes and failures.” The mean and variance of the binomial
distribution are functions of the parameters n and p, where » refers to the number in
the population and p to the proportion of successes. This relationship between the
parameters n and p and the binomial distribution affects the way we form test statis-
tics and confidence intervals for the proportions when using the normal approxima-
tion that we will discuss in Section 10.3. The mean of the binomial is np and the
variance is np(1 — p), as we will demonstrate.

Recall (see Section 5.7) that for a binomial random variable X with parameters »
and p, X can take on the values 0, 1, 2, . .., n with P{X = k} = C(n, k) pF(1 — p)**
fork=0,1,2,...,n Recall that P{X = k} is the probability of k successes in the n
Bernoulli trials and C(n, k) is the number of ways of arranging k successes and n — k
failures in the sequence of » trials. From this information we can show with a little
algebra that the mean or expected value for X denoted by E(X) is np. This fact is
given in Equation 10.1. The proof is demonstrated in Display 10.1 (see page 220).

The algebra becomes a little more complicated than for the proof of E(X) = np
shown in Display 10.1; using techniques similar to those employed in the foregoing
proof, we can demonstrate that the variance of X, denoted Var(X), satisfies the
equation Var(X) = np(1 — p). Equations 10.1 and 10.2 summarize the formulas for
the expected value of X and the variance of X.

For a binomial random variable X

EX)=mnp (10.1)

where 7 is the number of Bernoulli trials and p is the population success probability.
For a binomial random variable X

Var(X) =np(1 —p) (10.2)

where 7 is the number of Bernoulli trials and p is the population success probability.

To illustrate the use of Equations 10.1 and 10.2, let us use a simple example of a
Bernouilli trial in which » = 3 and p = 0.5. An illustration would be an experiment
involving three tosses of a fair coin; a head will be called a success. Then the possi-
ble number of successes on the three tosses is 0, 1, 2, or 3. Applying Equation 10.1,
we find that the mean number of successes is np = 3 (0.5) = 1.5; applying Equation
10.2, we find that the variance of the number of successes is np(1 — p) = 3(0.5)(1 —
0.5) = 1.5(.5) = 0.75. Had we not obtained these two simple formulas by algebra,
we could have performed the calculations from the definitions in Chapter 5 (sum-
marized in Display 10.1 and Formula D10.1).

To apply Formula D10.1, we compute the probability of each of the successes
(outcomes 0, 1, 2, and 3), multiply each of these probabilities by the number of suc-
cesses (0, 1, 2, and 3) and then sum the results, as shown in the next paragraph.

The probability of 0 successes is C(3, 0)p°(1 — p)?; when we replace p by (0.5),
the term C(3, 0)(0.5)°(1 — 0.5)* = (1)(1)(0.5)3 = 0.125. As there are 0 successes,
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Display 10.1. Proof that E(X) = np

To conduct this proof, we will use the formula presented in Chapter 5, Section
5.7, in which the probability of  successes in # trials was defined as P(Z = r) =
C(n, r)p"(1 — p)*". For the proof, we replace r by k (the number of trials) and sum
over the £ trials; this sum equals 1, as shown below:

3, C(n, kp*(1 —py*=1 (D10.1)

This equation holds for any positive integer # and proportion 0 < p < 1 when the
summation is taken over 0 =< k£ =< n. Assume k = 2 for the following argument.
The mean denoted by E(X) is by definition

i kC(n, kyp*(1 - py* = §n k{n! [k (n — k)!]}pH(1 = py*
=0 =y
= > {nl/[(k = D(n— B3P —py*
=i

=np ];{(n = DYtk = Dl(n = !}p*' (A = pyr*

n—1
= 2 (0= DY~ 1= =py
£

n—1

=np ZOC(n - Ljp(d - py3

Remember that by applying formula D10.1, with n — 1 in place of n in the for-
mula

n—1

Zoan ~ Ljp(1-py

since n — 1 is a positive integer (recall that n = 2, implying that n — 1 = 1). So for
n=2 EX=np.Forn=1, E(X)=0(1 —p) + l(p) = p = np also. So we have
shown for any positive integer n, E(X) = np.

we multiply 0.125 by 0 and obtain 0. Consequently, the contribution of 0 suc-
cesses to the mean is 0. Next, we calculate the probability of 1 success by using
C@3, Dp(1 — p)?, which is the number of ways of arranging 1 success and 2 fail-
ures in a row multiplied by the probability of a particular arrangement that has 1
success and 2 failures. C(3, 1) = 3, so the resulting probability is 3p(1 — p)* =
3(0.5)(0.5)% = 3(0.125) = 0.375. We multiply that result by 1, since it corresponds
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to 1 success and we find that 1 success contributes 0.375 to the mean of the dis-
tribution. The probability of 2 successes is C(3, 2)p*(1 — p), which is the number
of ways of arranging 2 successes and 1 failure in a row multiplied by the proba-
bility of any one such arrangement. C(3, 2) = 3, so the probability is 3p*(1 — p) =
3(0.5)%(0.5) = 0.375. We then multiply 0.375 by 2, as we have 2 successes, which
contribute 0.750 to the mean. To obtain the final term, we compute the probabili-
ty of 3 successes and then multiply the resulting probability by 3. The probability
of 3 successes is C(3, 3) = 1 (since all three places have to be successes, there is
only one possible arrangement) multiplied by p* = (0.5)* = 0.125. We then multi-
ply 0.125 by 3 to obtain the contribution of this term to the mean. In this case the
contribution to the mean is 0.375.

In order to obtain the mean of this distribution, we add the four terms together.
We obtain the mean = 0 + 0.375 + 0.750 + 0.375 = 1.5. Our long computation
agrees with the result from Equation 10.1. For larger values of n and different val-
ues of p, the direct calculation is even more tedious and complicated, but Equation
10.1 is simple and easy to perform, a statement that also holds true for the variance
calculation. Note that in our present example, if we apply the formula for the vari-
ance (Equation 10.2), we obtain a variance of np(1 — p) = 3(0.5)(0.5) = 0.750.

10.3 NORMAL APPROXIMATION TO THE BINOMIAL

Let W = X/n, where X is a binomial variable with parameters » and p. Then, since W
is just a constant times X, E(W) = p and Var(W) = p(1 — p)/n. W represents the pro-
portion of successes when X is the number of successes. Because often we wish to
estimate the proportion p, we are interested in the mean and variance of W (the sam-
ple estimate for the proportion p). In the example where n =3 and p = 0.5, E(W) =
0.5 and Var(W) = 0.5(0.5)/3 = 0.25/3 = 0.0833.

The central limit theorem applied to the sample mean of » Bernoulli trials tells us
that for large » the random variable ¥, which is the sample mean of the » Bernoulli
trials, has a distribution that is approximately normal, with mean p and variance p(1
— p)/n. As p is unknown, the common way to normalize to obtain a statistic that has
an approximate standard normal distribution for a hypothesis test would be Z = (W
— o)V po(l — po)/n, where p,, is the hypothesized value of p under the null hypoth-
esis. Sometimes W itself is used in place of p, in the denominator, since W(1 — W) is
a consistent estimate of the Bernoulli variance p(1 — p) for a single trial. Multiply-
ing both the numerator and denominator by n we see that algebraically Z is also
equal to (X —npo)/V n[pe(1 — po)].

Because the binomial distribution is discrete and the normal distribution is con-
tinuous, the approximation can be improved by using what is called the continuity
correction. We simply make Z = (X — np, — 1/2)/V n[py(l — py)]. The normal ap-
proximation to the binomial works fairly well with the continuity correction when n
= 30, provided that 0.3 <p < (.7. However, in clinical trials we are often interested
in p > 0.90; these cases require # to be several hundred before the Z approximation
works well. For this reason and because of the computational speed of modern com-
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puters, exact binomial methods commonly are used now, even for fairly large sam-
ple sizes such as n = 1000

To express Z in terms of ¥ in the continuity corrected version, we divide both the
numerator and denominator by ». The result is Z= (W —po— 1/{2n})/V py(1 — po)/n.

We use this form for Z as it provides a better approximation to expressions such
as P(W = a) or P(W > a). On the other hand, if we consider P(W < a) or P(W = a),
then we should use Z = (X — np, + 1/2)/V n[py(1 — py)] or, equivalently, Z = (W — p,
+1/{2n})/V po(1 = po)/n.

10.4 HYPOTHESIS TEST FOR A SINGLE BINOMIAL PROPORTION

To test the hypothesis that the parameter p of a binomial distribution equals a hy-
pothesized value p,, versus the alternative that it differs from p,, we can use the ap-
proximate normal quantities given in Section 10.3 either with or without continuity
correction. This statement means that we want to test the hypothesis that the propor-
tion (p) obtained from a sample is equivalent to some hypothesized value for the
population proportion (p,). The continuity correction is particularly important when
the sample size n is small. However, exact methods are now used instead; such
methods involve computing cumulative binomial probabilities for various values of
p. With the speed of modern computers, these calculations that used to be very
lengthy can now be computed rather rapidly.

A mathematical relationship between the integral of a beta function and the cu-
mulative binomial allows these binomial probabilities to be calculated by a numeri-
cal integration method rather than by direct summation of the terms of the binomial
distribution. The numerical integration method is a mathematical identity that ex-
presses the sum of binomial probabilities as an integral of a particular function. The
advantage of numerical integration is that an integral can be calculated relatively
quickly by numerical methods, whereas the summation method is computationally
slower. This approach, presented by Clopper and Pearson (1934), consequently
helps speed up the computation of the binomial probabilities needed to identify the
endpoints of a confidence interval. Hahn and Meeker (1991) show how to use this
method to obtain exact binomial confidence intervals.

The test procedures that use exact methods are always preferable to the normal ap-
proximation but carry the disadvantage that they do not have a simple form for an
easy table lookup. Consequently, we have to rely on the computer to provide us with
p-values for the hypothesis test or to compute an exact confidence interval for p.

Fortunately, though, there are relatively inexpensive software packages such as
StatXact that do this work for you. StatXact-5, Power and Precision, UnifyPow,
PASS2000, and nQuery 4.0 are packages that will determine power or sample size re-
quirements for hypothesis tests and/or confidence intervals for binomial proportions
or differences between two binomial proportions. See Chernick and Liu (2002) for a
comparison of these products and a discussion of the peculiar saw-toothed nature of
the power function. We also discuss these packages briefly in Chapter 16.
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Equation 10.3 shows the continuity-corrected test statistic used for the normal
approximation:

B (X—npy,—1/2) 103
Vil _pol (103)

where X is a binomial random variable with parameters # and p,. Alternatively,

_ (W—-pl/2n})
Vpo(1 —po)/n

where W = X/n. Z has approximately a standard normal distribution and is used in
this form when approximating P(W = a) or P(W > a).

For large sample sizes, the continuity correction is not necessary; Equation 10.4
shows the test statistic in that case:

7= (X —npy) (10.4)
Vn[py(1 = po)] '

where X is a binomial random variable with parameters #n and p,. Alternatively,

7= (W —po)
Vpo(l = po)/n

where W= X/n. Z has approximately a standard normal distribution.

Here is an example of how clinical trials use proportions. A medical device com-
pany produces a catheter used to perform ablations for fast arrhythmias called
supraventricular tachycardia (SVT). In order to show the location of cardiac electri-
cal activity associated with SVT, a map of the heart is constructed. The company
has developed a new heart mapping system that uses a catheter with a sensor on its
tip. Relatively simple ablation procedures (i.e., cutting nerve pathways) for SVT
have been carried out sufficiently often for us to know that current practice pro-
duces a 95% acute success rate. Acute success is no recurrence for a short period
(usually one or two days) before the patient is sent home. Companies also define a
parameter called chronic success, which requires that a recurrence not happen for at
least six months after the procedure. The new mapping system is expected to pro-
duce about the same success rate as that of the present procedure but will have the
advantage of quicker identification of the location to ablate and, hence, an expected
reduction in procedure time.

Most of the reduction in procedure time will be attributed to the reduction in the
so-called fluoroscopy time, the amount of time required for checking the location of
the catheter by using fluoroscopy. Shortening this time reduces the amount of radi-
ation the patient receives; physicians and the FDA view such a reduction as a bene-
fit to the patient. This reduction in fluoroscopy time is a valid reason for marketing
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the new device if the manufacturer also can show that the device is as efficacious as
current methods.

Consequently, the manufacturer decides to conduct a clinical trial to demonstrate
a reduction in fluoroscopy time. The manufacturer also wants to demonstrate the
device’s equivalence (or, more precisely, lack of inferiority) with respect to acute
success rate.

All patients will be treated with the new device and mapping system; their suc-
cess rate will be compared to the industry standard, p, = 0.95. (The proportion un-
der the null hypothesis will be set at 0.95.) The one-sample binomial test described
in this section will be used at the end of the trial.

Now let us consider what happened in an actual test of the device. Equivalence
testing as explained in Section 9.5 was used in the test. The company eventually
received approval for the device to treat SVT. A slightly modified version of the
device was available; the company sought approval of it as a mapping system to
treat VT (ventricular tachycardia). Mapping procedures for VT are more compli-
cated than those for SVT and have less than a 50% chance of success. With the
mapping system, the company expected to improve the acute success rate to above
50% and also reduce procedure time. In order to show superiority in acute success
rate, they tested the null hypothesis that p = p, = 0.50 versus the alternative that
p > 0.50. We refer to this example as a one-sided test in which we are trying to
show superiority of the new method. Later, we will see the use of a one-sided test
to show a statistically significant decrement in performance, i.e., p = p, = .0.50
versus p < 0.50.

10.5 TESTING THE DIFFERENCE BETWEEN TWO PROPORTIONS

In testing the difference between two proportions, we have at our disposal exact bi-
nomial methods. The software companies listed in the previous section also provide
solutions to this problem. In addition, we can use Fisher’s exact test (described in
Chapter 14). Now, as another solution, we will provide the normal approximations
for testing the difference between two proportions and give an example.

Let W, =X,/n, and W, = X,/n,, where X, is binomial with parameters p, and n, and
where X is binomial with parameters p, and n,. Note that p, and p, refer to popula-
tion proportions. We are interested in the difference between these two proportions:
P1—P»- This difference can be estimated by W; — W,. Now, the standard deviation for
W, =Wy is V[p,(1 —p,)/n, + p,(1—p,)/n,] because the variance of W, — W, is the sum
of the individual variances. Each of the variance terms under the radical is simply an
analog of the variance for a single proportion, as shown previously in Equation 10.4.
So a choice for Zwould be Z= { W, — W, —(p; )}/ [p1(1 — p))/n, + po(1 = py)in,].

However, this equation is impractical because p; and p, are unknown. One way
to obtain an approximation that will yield a Z that has approximately a standard nor-
mal distribution would be to use the unbiased and consistent estimates W, and W,
in place of p; and p,, respectively, everywhere in the denominator. Z is then a piv-
otal quantity that can be used for hypothesis testing or for confidence intervals.
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The usual null hypothesis is that p; = p, or p; — p, = 0. So under Hy: Z= (W, —
WHIN[Wi(1 — W))/n, + Wy(1 — W,)/n,] is the test statistic with an approximately
standard normal distribution.

Now, W, = X,/n; and W, = X,/n,. Under the null hypothesis, p; = p, = p;
consequently, W, and W, have the same binomial parameter p. In this case, it
makes sense to combine the data and X. = X + X, is binomial with parameters n,
+ n, and p. Then W, = X_/(n, + n,) is a natural estimate for p and has greater pre-
cision than either W, or W,. This estimate W, is reasonable only under the null hy-
pothesis, however. Using this argument, we can make a case that Z' = (W, —
W)N W1 —W,)/n, + W1 — W,)/n,] is better to use, since the denominator gives
a better estimate of the standard error of W, — W, when the null hypothesis is true.
It simplifies to Z' = (W, — Wy)/N[W (1 — W)[(1/n)) + (1/ n,)]. This formula will
not apply when we are generating approximate confidence intervals.

The Z test for the difference between two proportions p; — p, is

W - W)

2 WA W) + (Uimy)]

(10.5)

where Hy: py=p,=p, X, =X, + X5, and W_.= X_/(n, + n,).

To illustrate, suppose n; = 10, n, =9, X, = 7, and X, = 5. Then W, = 7/10 =
0.700, W, = 5/9 = 0.556, and W, = 12/19 = 0.632. Then Z = (0.700 — 0.556)/
(V(0.632(0.368)[(1/10) + (1/9)] = 0.134/7/0.233[19/90] = 0.134/V/0.233(0.211) =
0.134/70.049 = 0.134/0.222 = 0.604. This difference is not statistically significant.
Using the normal approximation we see from the standard normal table that P[|Z] >
0.604] =2P[Z>0.604] =2(0.5 - P[0 < Z<0.604]) = 2(0.5-P[0<Z<0.6])=1-
2P[0 < Z<0.6]=1-2(0.2257) =1 — 0.4514 = 0.5486. So the p-value is greater
than 0.5.

10.6 CONFIDENCE INTERVALS FOR PROPORTIONS

First we will consider a single proportion and the approximate intervals based on
the normal distribution. If W is X/n, where X is a binomially distributed random
variable with parameters n and p, then by the central limit theorem W is approxi-
mately normally distributed with mean p and variance p(1 — p)/n. Therefore, (W —
p)/Vp(1 — p)/n has an approximately standard normal distribution.

Because p is unknown, we cannot normalize W by dividing W by p. Instead, we
consider the quantity U= (W — p)// W(1 — W)/n. Since W is a consistent estimate of
p, this quantity U converges to a standard normal random variable as the sample
size n increases.

Therefore, we use the fact that if U were standard normal, then P[-1.96 = U =
1.96] =0.95 or P[-1.96 = (W —p)/VW(1 — W)/n = 1.96] = 0.95 or, after the usual
algebraic manipulations, P[W — 1.96VW(1 - W)n =p = W+ 1.96VW(1 — W)/n].
So the random interval [W — 1.96\V W(1 — W)/n, W + 1.96\V W(1 — W)/n] is an ap-
proximate 95% confidence interval for a single proportion p.
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[W—1.96VW(1 — W)in, W+ 1.96VW(1 — W)/n] (10.6)

where W = X/n and X is binomially distributed with parameters » and p. For other
confidence levels, change 1.96 to the appropriate constant C from the standard nor-
mal distribution.

As an example, suppose that we have 16 successes in 20 trials; X = 16 and n =
20. What would be an approximate 95% confidence interval for the population pro-
portion of successes, p? From Equation 10.6, since W= 16/20 = 0.80, we have [0.80
—1.96V0.8(0.2)/20, 0.80 + 1.960.8(0.2)/20] = [0.80 — 0.1753, 0.80 + 0.1753] =
[0.625, 0.975]. Later we will compare this interval to the exact interval obtained by
the Clopper—Pearson method.

Now let us consider two independent estimates of proportions, W, = X,/n,
and W, = X,/n,, where X, is a binomial random variable with parameters p,
and n; and X, is a binomial random variable with parameters p, and n,. Then,
Z=W,=W,) - (p, — p)IN[Wi(1 =W,)/n, + Wy(1 — W,)/n,] has an approximately
standard normal distribution. Therefore, P[-1.96 = Z = 1.96] is approximately
0.95. After substitution and algebraic manipulations, we have P[(W, — W,)
— LIVIW(1-Win + Wyl — Wy)in)] = (py — po) = [(Wy — W) +1.96
VIW,(1 — W))/n, + Wo(1 — W,)/n,]. The probability that p, — p, lies within this
interval is approximately 0.95; hence, the random interval [(W, — W,) — 1.96
VW = Wny + Wy(1 = W)mp][(Wy = W) + LISV W, (1 — Wy)/ny + Wy(1 —

W,)/n,] is an approximate 95% confidence interval for p, — p,.
An approximate 95% confidence interval for the difference between two propor-
tions p; — p, 1s

[(W=W) — LN T (1 — W))n, + Wyl — Wa)ln,,

(W, — Wy) + 196N TW,(1— W), + (Wo(1 — Wa)ny)] (10.7)

where W, = X;/n, and X, is binomially distributed with parameters », and p,, and
W, = X,/n, and X, is binomially distributed with parameters n, and p,. For other
confidence levels, change 1.96 to the appropriate constant C from the standard nor-
mal distribution.

For a numerical example, suppose 7, is 100 and #, is 50. Suppose X; = 85 and X,
= 26. We will calculate the approximate 95% and 99% confidence intervals for
p1—p, when W, =85/100=0.85 and W, =26/50 = 0.52. In the case of the 95% con-
fidence interval, the constant C = 1.96; hence, the interval is [(0.85 — 0.52) — 1.96
1/0.85(0.15)/100+ 0.52(0.48)/50, (0.85—0.52) +1.96V/0.85(0.15)/100 + 0.52(0.48)/50]
=[0.175, 0.485].

For exact intervals, the Clopper—Pearson method is used. Clopper and Pearson
(1934) provided the results of their method in graphical form. Hahn and Meeker
(1991) reprinted Clopper and Pearson’s work, along with much detail about confi-
dence intervals. The two-sided interval uses the F' distribution with the 100(1 — @)%
interval given by Equation 10.8. We will learn about the F' distribution in Chapter
13.
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The exact 100(1 — a)% confidence interval for a single binomial proportion is

[{(1+(m—-x+1F( - a/2:2n-2x+2,2x)/x}7",
{1+ (n—x){(x + DF(1 — /225 + 2, 21— 20)}} 1]

where x is the number of successes in n Bernoulli trials and F(vy: dfn, dfd) is the
100+yth percentile of an F distribution with dfs degrees of freedom for the numera-
tor and dfd degrees of freedom for the denominator. For the lower endpoint, y=1 —
a/2, dfn = 2n — 2x, and dfd = 2x. For the upper endpoint, y=1— «/2, dfn =2x + 2,
and dfd = 2n-2x.

Now let us revisit the example for approximate confidence intervals where X =
16, n =20, and 1 — &/2 = 0.95. The above equation becomes [{1 + 5 F(0.95: 10, 32)/
16371, {1 +4/{5 F(0.95: 34, 8)} }7']. For now we will take these percentiles by con-
sulting a table for the F distribution. From the table (Appendix A), we see that
F(0.95: 10, 32) = 2.94 and F(0.95: 34, 8) = 5.16 (by interpolation between F(0.95,
30, 8) = 5.20 and F(0.95, 40, 8) = 5.11. Plugging these values into Equation 10.8,
we obtain the interval [0.521, 0.866]. The value 0.95 tells us the percentile to look
up in the table; the two other parameters are the numerator and denominator de-
grees of freedom, to be defined in Chapter 12.

Compare this new interval to the interval from the normal approximation [0.625,
0.975]. Note that the widths of the intervals are about the same, but the normal ap-
proximation gives a symmetric interval centered at 0.80. The reason for the differ-
ence is that the sample size of 20 is too small for the normal approximation to be
very good, as the true proportion is probably close to 0.80; the Binomial distribu-
tion, though centered at 0.80, is much more skewed than a normal distribution and
has a longer left tail than right tail. In this case, the exact binomial solution is appro-
priate but the normal approximation is not.

If n were 100, the normal approximation and the exact Binomial distribution
would be in much closer agreement. So let us make the comparison when n = 100
and x = 80. The normal approximation gives [0.80—1.96 V' 0.8(0.2)/100, 0.80 + 1.96
V0.8(0.2)/100] = [0.722, 0.878], whereas the Clopper—Pearson method gives [{1 +
21 F(0.95: 42, 160)/80}71, {1 +20/{81 F(0.95: 162, 40)}}']. We have F(0.95: 42,
160) = 1.72 (by interpolation in the table, Appendix A) and F(0.95: 162, 40) = 1.90
(also by interpolation in the table). Substituting these values in the equation above
gives the interval [0.689, 0.885]. We note that the normal approximation, though
not as accurate as we would like, is much closer to the exact result when the sample
size is 100 as compared to when the sample size is only 20.

10.7 SAMPLE SIZE DETERMINATION—CONFIDENCE INTERVALS

AND HYPOTHESIS TESTS

Using the formulas for the normal approximation, sample sizes can be derived in
a manner similar to that employed in Chapters 8 and 9. Again, these calculations
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would be based on the width of the confidence interval or the power of a test at a
specific alternative. The resulting formulas are slightly different from those for
continuous variables. In the case of variance in the test of a single proportion, or
calculating a confidence interval about a proportion, we guess at p to find the nec-
essary standard deviation. We make this estimate because W is p(1 — p)/n, and we
do not know p (the population parameter). We also can be conservative in deter-
mining the confidence interval, because for all 0 = p =< 1, p(1 — p) is largest at p
=1/2.

Therefore, the variance of W = p(1 — p)/n = (1/2)(1/2)/n = 1/(4n). This upper
bound, 1/(4n), on the variance of W can be used in the formulas to obtain a mini-
mum sample size that will satisfy the condition for any value of p. We could not
find such a bound for the unknown variance of a normal distribution.

Again, software packages such as the ones reviewed by Chernick and Liu (2002)
provide solutions for all the cases (using both exact and approximate methods).

10.8 EXERCISES

10.1  Give definitions of the following terms in your own words:
. Sample proportion

. Population proportion

. Binomial variable

. Bernoulli trial

. Continuity correction

. Confidence interval for a proportion

- 0 0 O

10.2  Peripheral neuropathy is a complication of uncontrolled diabetes. The num-
ber of cases of peripheral neuropathy among a control group of 35 diabetic
patients was 12. Among a group of 11 patients who were taking an oral
agent to prevent hyperglycemia, there were three cases of peripheral neu-
ropathy. Is the proportion of patients with peripheral neuropathy compara-
ble in both groups? Perform the test at e = 0.05.

10.3  Construct exact 95% confidence intervals for the proportion of patients with
peripheral neuropathy in the medication group and the proportion of pa-
tients in the control group in the previous exercise. Construct two confi-
dence intervals for each proportion, one with correction for continuity and
the other without correction for continuity.

10.4 Referring to Exercise 10.2, construct an approximate 95% confidence inter-
val for the difference between the proportions of patients affected by pe-
ripheral neuropathy in the control group and in the medication group.

10.5 A dental researcher investigated the occurrence of edentulism (defined in
the research study as loss of two or more permanent teeth, not including
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10.6

10.7

10.8

10.9

10.10

loss of prophylactically extracted wisdom teeth) in a rural Latin American
village. A total of 34 out of 100 sampled adults had lost at least two teeth.
A study of a U.S. city found that the rate of loss of at least two teeth was
14%. Was the proportion of persons who had edentulism higher in the
Latin American village than in the U.S. city? Conduct the test at the o =
0.05 level.

Calculate an exact 95% confidence interval for the proportion of edentulous
persons in the Latin American village (refer to Exercise 10.5.)

For the data in Exercise 10.5, compute a 99% confidence interval using the
normal approximation with continuity correction. Is the result close to the
exact interval found in Exercise 10.6? Explain why or why not.

In a British study of social class and health, a total of 171 out of 402 lower
social class persons were classified as overweight. The percent of over-
weight persons in the general population was 39%. Based on these findings,
would you assert that low social class is related to being overweight? Test
this hypothesis at the & = 0.01 level.

A longitudinal study of occupational status and smoking behavior among
women reported at baseline that 170 per 1000 professional/managerial
women were nicotine dependent. The corresponding rate among blue collar
women was 310 per 1000. At the a = 0.05 level, determine whether there is
a significant difference in nicotine dependence between the proportion of
women who are classified as professional/managerial workers in compari-
son to those who are classified as blue collar workers. Then compute the ap-
proximate 99% confidence interval for the difference between these two
proportions.

An epidemiologic study examined risk factors associated with pediatric
AIDS. In a small study of 30 cases and 30 controls, a positive history of
substance abuse occurred among 11 of the cases and 6 of the controls.
Based on these data, can the investigator assert that substance abuse is sig-
nificantly associated with pediatric AIDS at the a = 0.05 level? Compute
the approximate 95% confidence interval for the difference between the
proportions of substance abuse found in the case and control groups.
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CHAPTER 11

Categorical Data and
Chi-Square Tests

It has become increasingly apparent over a period of several
years that psychologists, taken in the aggregate, employ the

chi-square test incorrectly.
—Don Lewis and C. J. Burke, The Use and Misuse of the Chi-Square Test,
Psychological Bulletin, 46, 6, 1949, p. 433

The chi-square test is one of the most commonly cited tests in the biomedical litera-
ture. Before discussing this statistic, we would like to digress briefly to consider
how it fits into the “big picture” of statistical testing. Previously, we presented the
concepts of measurement systems, levels of measurement, and the appropriate use
of statistics for each type of measurement system.

To review, the four levels of measurement are nominal, ordinal, interval, and ra-
tio. Nominal measures are classifications such as sex (male, female) or race (white,
black, Asian). Ordinal measures refer to rankings, e.g., shoe size (narrow, medium,
wide) or year in college (freshman, sophomore, junior, senior). Both interval and
ratio measures have the property of equal measurement intervals. The measurement
systems are different in that an interval scale does not have a true zero point, where-
as a ratio scale has a meaningful zero point.

For example, the Fahrenheit temperature scale is an interval scale; IQ scores also
denote interval measurement. You may see that any two adjacent points on an inter-
val scale have the same distance between them as any other two adjacent points,
i.e., the distance between IQ 60 and 61 is the same as the distance between 120 and
121—one unit. Note that the measurement scale for IQ does not have a true zero
point; there is no such thing as a zero IQ. A ratio scale is also an interval scale but it
has the property of a “true” zero point that means nothing. There are many exam-
ples of ratio scales: blood cholesterol level, height, and weight are only a few. You
can see that a cholesterol value of 0 would mean 0 cholesterol. However, a Fahren-
heit temperature of 0 does not mean the absence of heat. In the Kelvin scale (a ratio
scale), a temperature of 0 refers to the absence of heat (purely a theoretical concept
that has never been attained).

Introductory Biostatistics for the Health Sciences, by Michael R. Chernick 231
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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11.1 UNDERSTANDING CHI-SQUARE

In chapters 8 and 9, we covered the ¢ test and Z test, which use interval or ratio mea-
sures. Now we turn to the chi-square test, which is appropriate for nominal and or-
dinal measurement. The chi-square test may be used for two specific applications:
(1) to assess whether an observed proportion agrees with expectations; (2) to deter-
mine whether there is a statistically significant association between two variables
(such as variables that represent nominal level measurement or, in some cases, ordi-
nal level measurement).

In the case of testing the association between two or more variables, the data are
portrayed as contingency tables. these tables are also known as cross-tabulation ta-
bles. For example, the investigator might cross-tabulate the results for a study of
gender and smoking status. A chi-square test could be used to determine the associ-
ation between these two variables. Later, we will give an example of how to set up
a contingency table and perform a chi-square test.

The formula for many test statistics with approximate chi-square distributions is:

07 2
XZZZ(TE) (11.1)

where
O = observed frequency
E = expected frequency

As an example of one of the simplest uses of the foregoing formula, let us per-
form the chi-square test for a single proportion. (We will see that in some instances,
the chi-square test may be used as an alternative to tests of proportion discussed in
Chapter 10.) The chi-square test that we will use in this example shall be called a
test with an a priori theoretical hypothesis, because the expected frequency of the
outcome is known theoretically.

Suppose we run a coin toss experiment with 100 trials and find 70 heads; is this a
biased outcome? That is, we want to know whether this is a very unusual event for a
fair coin toss. If so, we may decide that the alternative—that the coin is loaded in
favor of heads—may be more plausible. The data may be portrayed as shown in
Table 11.1.

We would expect a fair coin toss to produce 50% heads and 50% tails in the long
run (the theoretical a priori expectation). Table 11.1 lists all of the elements re-

TABLE 11.1. Data from a Coin Toss Experiment

0] E O-E (0—E)? (O-EVE
Heads 70 50 20 400 8
Tails 30 50 -20 400 8

Sum () 100 100 0 800 16
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quired by the chi-square formula to calculate the chi-square statistic. This value is
shown at the intersection of the last column and last row. Substituting it in the chi-
square formula, we obtain:

(O-Ep _

XZZET 16

In order to evaluate whether this is a significant chi-square value—i.e., whether
the coin toss is unfair—we need to compare the result we have obtained with the
value in a chi-square table. We need to know the number of degrees of freedom as-
sociated with the coin toss experiment. Degrees of freedom (the term means “free to
vary”) are denoted by the symbol df. In this case, df = 1. (You may surmise that in a
given number of coin tosses, once the number of heads is known, then the number
of tails is fixed; only one value is free to vary. Let us say that in a small trial of 10
coin tosses, we find six heads; the number of tails must be four.)

In our example, we need to do a table lookup to determine the chi-square critical
value. As with other statistical tests, the level of significance may be set to p < 0.05
or 0.01 or 0.001. We know from a chi-square table that the chi-square critical value
is 3.84 for df = 1 at p <0.05.

Therefore, the null hypothesis that the coin toss is unbiased would be rejected, as
we obtained a chi-square of 16. The coin toss seems to be favoring heads. By the
way, it is helpful to memorize this particular chi-square value as it comes up in
many situations that have one degree of freedom, such as the 2 x 2 tables (shown in
Sections 11.3 and 11.6).

One of the best statistical texts that deals explicitly with categorical data is
Agresti (1990). Refer to it if you are interested in more details or aspects of the the-
ory.

11.2 CHI-SQUARE DISTRIBUTIONS AND TABLES

Appendix D provides chi-square values for various degrees of freedom and p val-
ues. To use the table, identify the appropriate degrees of freedom (df) and level of
significance of the test. The entries reported in the table each indicate the value of
x? above which a proportion “p” of the distribution falls. Here is an example: For df
=1, ax? of 3.841 is exceeded by 5% of the distribution at p = 0.05.

11.3 TESTING INDEPENDENCE BETWEEN TWO VARIABLES

In testing independence between two variables, we do not assume an a priori ex-
pected outcome or theoretical (alternative) hypothesis. For example, we might want
to know whether men differ from women in their preference for Western medicine
or alternative medicine for treatment of stress-related medical problems. In this ex-
ample, we assume that subjects can select only a single preference such as Western
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TABLE 11.2. Gender and Preference for Medical Care

Type of medical care preference

Gender Western Alternative Total
Men 49 (39.5) a 51 (60.5) b 100 (a + b)
Women 30 (39.5) ¢ 70 (60.5) d 100 (¢ +d)
Total 79 (a+c) 121 (b + d) 200

Grand total (n)

Note: Expected frequencies are shown in parentheses.

or alternative, but not both types. Our null hypothesis will be that the proportions in
each category do not differ. There are a total of 200 subjects, equally divided be-
tween men and women as shown in Table 11.2; this is called a contingency table or
cross-tabulation of two variables.

The table presents the observed frequencies from a survey of a research sample.
Now we need to compute the expected frequencies for each of the four cells. This
calculation uses the formula [(a + b)(a + ¢)]/n for cell a. The formula is based on
the null hypothesis that assumes no difference between men and women. This is the
same as saying that the rows and columns are statistically independent. So the ex-
pected proportion of men who prefer Western medicine should be the population
total #» multiplied by the probability of being a man preferring Western medicine.
The probability of being a man is estimated by the frequency (a + b)/n, the propor-
tion of men in the table (sample). The probability of preferring Western medicine is
estimated by (a + ¢)/n, the proportion of people favoring Western medicine in the
table. The independence assumption lead to multiplication of these two probabili-
ties, namely [(a + b)/n] [(a + ¢)/n] or (a + b)(a + c)/n*. The foregoing formula is
then obtained in a manner similar to that for an expectation for a binomial total; i.e.,
np, where in this case p = (a + b)(a + ¢)/n®. So the expected total for the cell is n{(a
+ b)(a + ¢)/n?} = (a + b)(a + c)/n. This same idea can be applied to obtain the ex-
pectations for the other three cells.

To calculate the expected frequency for cell a, we first determine the proportion
of males and females (100/200 = 0.5) and then multiply this result by the respective
column totals (e.g., the expected frequency for men who prefer Western medicine is
0.5 x 79 = (39.5) The general formula for the expected frequency in each cell is as
follows:

E(@) = [(a-+ byn)(a+ )= LTS
E(b)=[(a+ by/n)(b + d) = W

E(c)=[(c +d)n)(a+c)=

n
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(c +d)b +d)

n

E(d) = [(c + d)/n](b + d) =

N | @9-305  (30-395°  (S1-60.57  (10-6057
chi-square 395 395 60.5 60.5 '

where df = 1, }? critical value = 3.84, and a = 0.05. In contingency tables, degrees
of freedom (df) = (# rows — 1)(# columns — 1). For example, in this table, the chi-
square critical value =3.84, « = 0.05, df =1 [df = (r — 1)(k— 1) = 1]. We have ob-
tained chi-square = 7.55, which exceeds the critical value. The result is statistically
significant, suggesting that there are gender differences in preference for alternative
medicine treatments for stress-related illnesses.

Now, in the next example (refer to Table 11.3), we will consider a chi-square test
for a table that has more than two columns or rows. This type of table is called an r
X ¢ contingency table because there can be 7 rows and ¢ columns. We will limit our
example to a 3 x 3 table, i.c., one that has three rows and three columns. By exten-
sion, it will be possible to apply this example to tables that have » and ¢ rows and
columns.

Each cell in the contingency table is given an “address” depending on where it is
located. Note that the first cell is 7; ;. The first subscripted number refers to the row
and the second to the column; the last cell is n; ;. The notations for the respective
row and column totals are shown in the table.

The expected frequencies are computed as follows:

Eny 1) = (Enl.l(zn'l)
E(na,) = (Enz.l(znll)
Elny ) = (2n3.1l(2n'3)

There may be delays in participating in breast cancer screening programs ac-
cording to racial group membership. As a result, some racial groups may tend to
present with more advanced forms of breast cancer. Data from a hypothetical breast
cancer staging study are shown in Table 11.4. We wish to test the hypothesis that

TABLE 11.3. Notation Used in a 3 x 3 Contingency Table

Variable Y
Variable X n ny, ny3 n,.
ny ny» ny3 E”lz-
ns n3 ns 3 2”}

>n, Sn, Sns Total =n
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TABLE 11.4. Computation Example—the Association between Race/Ethnicity and
Breast Cancer Stage in a Sample of Tumor Registry Patients

Breast cancer stage

Race In situ Local Regional/distant Total
White 124 (232.28) 761 (663.91) 669 (657.81) 1554
African American 36 (83.85) 224 (239.67) 301 (237.47) 561
Asian 221 (64.87) 104 (185.42) 109 (183.71) 434
Total 381 1089 1079 2549

Note: Expected values are shown in parentheses.

the proportions of each racial classification by stage of breast cancer are equal. The
expected frequencies shown in parentheses in Table 11.4 have been computed by
using the foregoing formulas. For example, cell (1, 1): (1554 x 381)/2549 =
232.2770. Then we compute (O — E) ?/E. These values are reported in Table 11.5.
Referring to Table 11.5, you can see that chi-square is 552.0993. The degrees of
freedom are (r — 1)(c — 1) = (3 - 1)(3 — 1) = 4. At the 0.001 level, a chi-square value
of 16.266 would be statistically significant. Thus, we may conclude that cancer di-
agnoses are not equally distributed by proportion across the contingency table.

114 TESTING FOR HOMOGENEITY

A chi-square test for homogeneity is used in empirical investigations when the mar-
ginal totals for one condition have been fixed at certain values and the totals for the
other condition may vary at random. This situation might occur when an investiga-
tor has assigned a fixed number of subjects to a study design and then determines
how the subjects are distributed according to a second variable, such as an exposure
factor for a disease.

Table 11.6 provides an example of the possible association between smoking
and chronic cough. Suppose that a researcher who is studying adult factory workers
recruits 250 smokers and a comparison group of 300 nonsmokers. The researcher

TABLE 11.5. Values of |O — E|*/E for the Association between Race and Cancer Stage

Breast cancer stage

Race In situ Local Regional/distant Total
White 50.4738 14.1985 0.1902
African American 27.3085 1.0250 16.9942
Asian 375.7743 35.7499 30.3849

Total 453.5566 50.9743 47.5694 552.0993
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TABLE 11.6. The Association between Smoking and Chronic Cough

Diagnosis of chronic cough

Smoking Yes No Total
Yes 99 (52.73) a 151 (197.27) b 250
No 17 (63.27) ¢ 283 (236.73) d 300
Total 116 (a+¢) 434 (b + d) 550

Grand total (n)

Note: Expected frequencies are shown in parentheses.

then refers the employees to a medical exam that assesses the presence of lung dis-
eases; chronic cough is included in the review of symptoms. The data are charted in
Table 11.6.

The expected frequencies are computed in the same way as in a 2 x 2 table. (Re-
fer back to Section 11.3 for the formulas.) Note also that the frequencies shown in
cells b and d can be determined by subtraction. That is, if you know only the total
number of smokers and the number of cases of chronic cough among smokers, you
can determine the number of smokers who do not have chronic cough by subtrac-
tion (250 — 99).

(995273 (1763277 (151-197.27° (283236737

=94,
52.73 63.27 197.27 236.73 9433

Chi-square=

This is a significant chi-square for df = 1 and suggests that the proportions of per-
sons with chronic cough are not equally distributed between smokers and nonsmok-
ers.

11.5 TESTING FOR DIFFERENCES BETWEEN TWO PROPORTIONS

The foregoing chi-square tests also may be considered tests of proportion and may
be used as an alternative to the binomial test of proportions (Chapter 10). Tests for
differences among groups are based on whether or not the proportions are equal. So
a test of independence between gender and smoking is the same as testing that the
proportion of male smokers equals the proportion of female smokers. The binomial
test is called an exact test of significance, whereas the chi-square test is an approxi-
mate test of the comparison of two or more proportions. The chi-square test statistic
under the null hypothesis has an approximate chi-square distribution based on as-
ymptotic theory, but the exact probability distribution is not a chi-square. Hence,
the significance level based on the table of the chi-square distribution is only an ap-
proximation to the true significance level. On the other hand, the binomial distribu-
tion is the exact probability of the test statistic and so an exact significance level can
be found by referring to the appropriate binomial distribution under the null hypoth-
esis.
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11.6 THE SPECIAL CASE OF THE 2 x 2 CONTINGENCY TABLE

Many situations in biomedical research call for the use of a 2 x 2 contingency table
(Table 11.7) in which the researcher might be comparing two levels of a study con-
dition, such as treatment and control, and two levels of an outcome, such as yes/no
or dead/alive. By using algebra, the formula for chi-square has been greatly simpli-
fied for easy computation. The calculation formula has many applications in epi-
demiologic research settings.

In a2 x 2 table we use an independent chi-square test, where chi-square = 2(|O —
E|—1/2)*/E. The term “1/2” is called Yates’ correction and provides a more precise
estimate of chi-square when there are only two rows and columns.

By algebra, the calculation formula for a 2 x 2 2 is:

(lad —bc| — NI2)*N
(a+tb)(ctd)(atc)(b+d

where df = 1, »? critical = 3.84, and a = 0.05.

Now let us apply the calculation formula to a specific example. Data shown in
Table 11.8 reflect the number of male and female smokers between two hypotheti-
cal samples of males and females (n = 54 and n = 46, respectively).

If there is no association between gender and smoking, one would expect that the
deviations between the observed and expected numbers of smokers and nonsmok-
ers in each of the four cells are not statistically significant. If there is an association,
some of the cells will have statistically significant deviations between the observed
and expected frequencies, which would suggest an association between smoking
and gender.

Whether this association is likely or not likely to be due to chance may be evalu-
ated by the chi-square statistic. Using the data in the bivariate 2 x 2 contingency
table (Table 11.8),

Xdf=1)=

(1213115 % 33| - 100/2)2 100
a (36) (64) (54) (46) -

196

Because the calculated x*> does not exceed the critical value (3.84), gender does not
appear to be related to smoking status.

TABLE 11.7. General 2 x 2 Contingency Table

Outcome
Study Condition (or factor) Yes No Total
Treatment a b atb
Control c d c+d
Total a+tc b+d at+tb+tc+d

Grand total
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TABLE 11.8. Bivariate 2 x 2 Contingency Table

Smoking Status

Gender Yes No Row Total
Male a=21 b=33 a+b=54
Female c=15 d=31 ct+d=46
Column total atc=36 b+d=064 Grand total = 100

11.7 SIMPSON’S PARADOX IN THE 2 x 2 TABLE

Sometimes, as in a meta-analysis, it may be reasonable to combine results from two
or more experiments that produce 2 x 2 contingency tables. We simply cumulate
the totals in the individual contingency tables into the corresponding cells for the
combined table. An apparent paradox called Simpson’s paradox can result, howev-
er. In Simpson’s paradox, we see a particular association in each table but when we
combine the tables the association disappears or is reversed!

To see how this can happen, we take the following fictitious example from
Lloyd (1999, pages 153—154). In this example, a new cancer treatment is applied to
patients in a particular hospital and the patients are classified as terminal and non-
terminal. Before considering the groups separately we naively think that we can
evaluate the effectiveness of the treatment by simply comparing its effect on both
terminal and nonterminal patients combined. The hospital has records that can be
used to compare survival rates over a fixed period of time (say 2 years) for patients
on the new treatment and patients taking the standard therapy. The hospital records
the results in 2 X 2 tables to see if the new treatment is more effective for each of the
groups. This results in the following 2 x 2 tables taken from Lloyd (1999) with per-
mission.

Table for All Patients
Treatment Survived Died Total
New 117 104 221
Old 177 44 221
Total 294 148 442

By examining the table, the result seems clear. In each treatment group, 221 pa-
tients got the treatment but 60 more patients survived in the old treatment compared
to the new treatment group. This translates into a two-year survival rate of 80.1%
for the old treatment group and only 52.9% for the new treatment group. The differ-
ence between these two proportions is clearly significant. So the old treatment is su-
perior. Let us slow down a little and investigate more closely what is going on here.
Since we can split the data into two tables, one for terminal patients and one for
nonterminal patients, it make sense to do this. After all, without treatment terminal
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patients are likely to have a shorter survival time than nonterminal patients. How do
these tables compare and what do they show about the treatments?

Table for Terminal Patients

Treatment Survived Died Total
New 17 101 118
Oold 2 36 38
Total 19 137 156

Table for Nonterminal Patients

Treatment Survived Died Total
New 100 3 103
Old 175 8 183
Total 275 11 286

Here we see an entirely different picture! The survival rate is much lower in the
table for terminal patients, as we might expect. But the new treatment provides a
survival rate of 14.4% compared to a survival rate of only 5.2% for the old treat-
ment. For the nonterminal patients, the new treatment has a 97.1% survival rate
compared to a 95.6% rate for the old treatment. In both cases, the new treatment ap-
pears to be better (the difference between 97.1% and 95.6% may not be statistically
significant).

Simpson’s paradox occurs when, as in this example, two tables each show a
higher proportion of success (e.g., survival) for the one group (e.g., the new treat-
ment group), but when the data are combined into one table the success rate is high-
er for the other group (e.g., the old treatment group). Why did this happen? We
have a situation in which the survival rates are very different for terminal and non-
terminal patients but we did not have uniformity in the number of patients in the ter-
minal group that received the new versus the old treatment. Probably because the
new treatment was expected to help the terminal patients, far more terminal patients
were given the new treatment compared to the old one (118 received the new treat-
ment and only 38 received the old treatment among the terminal patients. This cre-
ated a much larger number of nonsurviving patients in the new treatment group than
in the old treatment group, even though the percentage of nonsurviving patients was
lower. So when the two groups are combined, the new treatment group is penalized
in the overall proportion nonsurviving simply because of the much higher number
of nonsurviving patients contributed by the terminal group.

So we should not be surprised by the result and the paradox is not a real one. It
does not make sense to pool this data when the proportions differ so drastically be-
tween the classes of patients. Had randomization been used so that the groups were
balanced, we would not see this phenomenon. Simpson’s paradox is a warning to
think carefully about the data and to avoid combining data into a contingency table
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when there are known subgroups with markedly different success proportions. In
our example, the overall survival rate for terminal patients was only 12.2%, with 19
out of 156 surviving. On the other hand, the survival rate for the nonterminal pa-
tients was 96.2%, with 275 out of 286 patients surviving. Although the difference in
proportions is very dramatic here, Simpson’s paradox can occur with differences
that are not as sharp as these. The main ingredient that causes the trouble is the im-
balance in sample sizes between the two treatment groups.

11.8 McNEMAR'’S TEST FOR CORRELATED PROPORTIONS

In Chapter 9, we discussed the concept of paired observations. An illustration was
the paired 7 test, which is used when two or more measurements are correlated. That
is, we might conduct an experiment and collect before and after measurements on
each subject. The subject’s score on the after measure is in part a function of the sta-
tus on the before measurement. Other examples in which paired observations occur
include studies of twins (who have genetically similar characteristics) and animal
experiments that use littermates.

We used the paired ¢ test to examine correlated interval and ratio measurements.
McNemar’s test is used for categorical data that are correlated, for assessment of
equality of proportions when the binary categorical measurements are correlated.
When the binary measurements cannot be made on the same subjects, as in the fol-
lowing example, we can still use McNemar’s test to advantage if there is a way to
pair the subjects so that the results are correlated. Correlation will be discussed in
detail in Chapter 12. This can happen, for example, in a case control study where
demographic characteristics are used to match subjects.

Here is an example: Suppose that we would like to find out how people stop
smoking successfully. In particular, we would like to determine which of two meth-
ods is more effective: the nicotine patch or group counseling sessions. So we match
150 subjects who tried to stop by using the nicotine patch with 150 subjects who
tried to stop smoking by using group counseling.

Then we proceed as follows. Define 0 as a failure and 1 as a success. The possi-
ble pairs are (0, 0), (0, 1), (1, 0), and (1, 1) with the first coordinate representing the
nicotine patch subject and the second representing the matched subject who tried
group counseling. Let  be the number of cases with (1, 0) (i.e., the first member of
the pair being successful on the nicotine patch with the corresponding member of
the pair a failure using group counseling) and s the number of cases with (0, 1) (i.e.,
subjects who fail using the nicotine patch but whose corresponding member of the
pair is successful under group counseling). These are called nonconcordant pairs
because the subjects in the pair have opposing outcomes. The other pairs (0, 0)
(both members of the pair fail) and (1, 1) (both members of the pair succeed) are
called concordant pairs because the results are the same for the members of the pair.
These are also sometimes called tied pairs because the scores are the same for each
member of the pair.

The concordant observations provide information about the degree of positive
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TABLE 11.9. Outcomes for Pairs of Subjects that Attempted to Stop Smoking

Counseling Failure Counseling Success
Nicotine Patch Failure (0,0)n=143 0,1)s=48
Nicotine Patch Success (1,0)r=92 1, 1)b=17

correlation between the members of the pair but do not provide any information
about whether or not the two proportions are equal. If we consider only the tables
that have the observed values for » + s, the nonconcordant pairs provide all the in-
formation we need to test the null hypothesis that the two proportions are equal.
This is similar to conditioning on the marginal totals as we did for Fisher’s exact
test in the 2 x 2 contingency table that you will encounter in Chapter 14.

Under the null hypothesis, we expect » and s to be about the same. So the expect-
ed total for (1, 0) pairs is (» + s5)/2 and the expected total for (0, 1) is also (r + 5)/2
under the null hypothesis. We use a chi-square statistic that compares the observed
totals  and s to their expected values ([r + s]/2 under the null hypothesis). In Mc-
Nemar’s test, we ignore the number of concordant pairs » + b, where » is the num-
ber of (0, 0) pairs and b is the number of (1, 1) pairs. McNemar’s test statistic is 7=
(r—[r + s1/12)%/[r + s]/2 + (s — [r + s]/2)?/[r + s]/2. This simplifies to (r — s)?/(r + s)
since (v — [r + sJ/2)*/[r + s1/2 = ([r — s1/2)*/[r + s1/2 = (r — s)*/[2(r + s)] and (s — [
+ $12)%[r + 512 = ([s — ¥12)%[r + s1/2 = (r — s)*/[2(r + s)] also [see Conover
(1999), page 166, for more details on McNemar’s test]. The data are shown in Table
11.9. There are 300 matched pairs of subjects. 109 nicotine users were successful
(r + b) and 66 counseling users (s + b) were successful. 7 = (r — §)%/(r + s) =
(44)%/140 = 1936/140 = 13.8 (significant, p < 0.01, df = 1). Note that » and b are ig-
nored since they do not contribute to determining the difference.

We conclude that the nicotine patch is more commonly used than group counsel-
ing among persons who stop smoking. Or put another way, subjects who try to stop
smoking are more successful if they use the nicotine patch rather than group coun-
seling.

11.9 RELATIVE RISK AND ODDS RATIOS

The concepts of relative risk and odds ratios are derived from epidemiologic stud-
ies. A thorough discussion of them is beyond the scope of this text. We refer the
reader to Friis and Sellers (1999) or Lachin (2000) for in-depth coverage of these
topics. However, we will review them briefly here, because they are common mea-
sures that are germane to any treatment of categorical data.

The relative risk is used in cohort studies, which are a type of prospective study in
which persons who have different types of exposure to risk factors for disease are fol-
lowed prospectively, meaning that disease-free subjects are followed over time and
the occurrence of new cases of disease is recorded. The occurrence of new cases of
disease (known as incidence) is compared between subjects who have an exposure of
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TABLE 11.10. 2 x 2 Table for Assessment of Relative Risk

Outcome
Factor Present Absent Total
Yes a b atb
No c d c+d

R.R. (relative risk) = a/(a + b) + c/(c + d) = a(c + d)/c(a + b).

interest and those who do not. Consequently, the subjects must be free from the dis-
ease of interest before the exposure occurs, and they must be observed after a period
of time to ascertain the effects of exposure. In a cohort study, the measure of associ-
ation between exposure and disease is known as the relative risk (R.R.).

Relative risk is a number that can vary from very low (approaching 0) to “large.”
A relative risk of | suggests that the risk of an outcome of interest is equally bal-
anced between those exposed and not exposed to the factor. As relative risk increas-
es above 1, the risk factor has a stronger association with the study outcome. Table
11.10 presents the format of a 2 x 2 table for assessment of relative risk; a calcula-
tion example is provided in Table 11.11.

Researchers follow a cohort of 300 smokers and a comparison cohort of non-
smokers over a 20-year period. The relative risk of lung cancer associated with
smoking is 98/300 + 35/700 = 6.53. These data suggest that the smokers are 6.5
times more likely to develop lung cancer than the nonsmokers. Sometimes the rela-
tive risk can be less than 1. This value suggests that the exposure factor is a protec-
tive factor. For example, if the incidence of lung cancer had been lower among the
smokers, smoking would be a protective factor for lung cancer!

A second type of major epidemiologic study is a case-control study. This study
is a type of retrospective study in which cases (those who have a disease of interest)
are compared with controls (those who do not have the disease) with respect to ex-
posure history.

For example, we might also study the association between smoking and lung
cancer by using the case-control approach. A group of lung cancer patients (the
cases) and controls would be assessed for history of smoking. The odds ratio (O.R.)
is the measure of association between the factor and outcome in a case-control
study. In Table 11.12, we provide a 2 x 2 table for assessment of an odds ratio. The
corresponding calculation example is shown in Table 11.13.

TABLE 11.11. Smoking and Lung Cancer Data for a Cohort Study

Lung cancer

Smokers Present Absent Total

Yes 98 202 300
No 35 665 700
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TABLE 11.12. 2 x 2 Table for Assessment of an Odds Ratio

Factor Cases Controls
Yes a b
No c d
Total a+tc b+d

O.R. (odds ratio) = a/c + b/d = ad/bc.

TABLE 11.13. Smoking and Lung Cancer Data for a
Case-Control Study

Smokers Lung Cancer Cases Controls
Yes 18 15
No 9 12
Total 27 27

OR. =12 (18)/9 (15) = L.6.

In this example, smokers were 1.6 times as likely to develop lung cancer as non-
smokers. Note that the odds ratio is a measure of association that is interpreted in a
similar way as a relative risk.

Note that throughout the foregoing examples we have calculated only point esti-
mates of relative risk. You might be interested in confidence intervals or hypothesis
tests. For example, if we could obtain a 95% confidence interval for relative risk
that did not include 1, we would be able to reject the null hypothesis of no differ-
ence at the 5% level. This topic is outside the scope of the present text, but the in-
terested reader can find the asymptotic results needed for approximate confidence
intervals on relative risk in Lachin (2000), page 24.

11.10  GOODNESS OF FIT TESTS—FITTING HYPOTHESIZED
PROBABILITY DISTRIBUTIONS

Goodness of fit tests are tests that compare a parametric distribution to observed
data. Tests such as the Kolmogorov—Smirnov test look at how far a parametric cu-
mulative distribution (e.g., normal or negative exponential) deviates from the em-
pirical distribution. There is a chi-square test for goodness of fit. Recall the negative
exponential distribution is a distribution with the probability density fix) = A
exp(—Ax) for x > 0, where A > 0 is known as the rate parameter.

For the chi-square test, we divide the range of possible values for a random vari-
able into connected disjoint intervals. By this we mean that if the random variable
can only take on values in the interval [0, 10] then the set of disjoint connected in-
tervals could be [0, 2), [2, 4), [4, 6), [6, 8), and [8, 10]. These intervals are disjoint
because they contain no points in common. They are connected because there are
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no points missing in between the intervals and when they are put together they com-
prise the entire range of possible values for the random variable.

For each interval, we count the number (or proportion) of observations from the
observed data that fall in that interval. We also compute an expected number for the
fitted probability distribution. The fitted probability distribution is simply the para-
metric distribution that uses estimates for the parameters in place of the unknown pa-
rameters. For example, a fitted normal distribution would use the sample mean and
sample variance in place of the parameters u and o2, respectively. As with the other
chi-square tests described in this chapter, we compute the quantities (O, — E,)*/E; for
each interval i and sum them up over all the intervalsi=1, 2, . . ., k. Here E; is ob-
tained by integrating the fitted probability density function over the ith interval.

Under the null hypothesis that the data come from the parametric distribution,
the test statistic has an approximate chi-square distribution with k — g — 1 degrees of
freedom, where ¢ is the number of parameters estimated from the data to compute
the expected values E;.

So for a normal distribution, we would need to estimate the mean and standard
deviation. Consequently, ¢ would be 2 and the degrees of freedom would be & — 3.
For a negative exponential distribution, we need to estimate only the rate parameter,
so g = 1 and the degrees of freedom are k — 2. Recall that the rate parameter mea-
sures how many events we expect per unit time. Generally, we do not know its val-
ue a priori but can estimate it after the data have been collected. For a detailed ac-
count of goodness of fit tests for both continuous and discrete random variables, see
the Encyclopedia of Statistical Sciences, Volume 3 (1983), pp. 451-461.

The following example, taken from Nelson (1982), represents complete lifetime
data for a negative exponential model. The table presents the time to breakdown of
insulating fluid at a voltage of 35 kV. In this case, we have 12 observed times,
which are shown in Table 11.14.

TABLE 11.14. Seconds to Insulating Fluid
Breakdown at 35 kV*

Time (sec)

30
33
41
87
93
98
116
258
461
1180
1350
1500

*Adapted from Nelson, 1982, p. 252, Table 2.1.
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First, we need to estimate the rate parameter. The best estimate of expected time
to failure is the sum of the failure times divided by the number of failures. This esti-
mate is often referred to as the mean time between failures. Using the data in Table
11.14, we calculate the mean time between failures as follows:

(30+33+41+87+93+98+116+258+461 + 1180+ 1350 + 1500)/12
=437.25 seconds

The reciprocal of this quantity is called the failure rate. In our example, it is
0.002287 failures per second.

Now we can determine for any interval the probability of failure in the interval
denoted p; for interval i. Since S(#) = exp(—Af) is the survival probability for the in-
terval [0, ¢], we can estimate A as 0.002287. For any interval, i = [a,, b;], and p,,
the probability of failure in interval i, is estimated as exp(—0.002287a;) —
exp(—0.00287b;).

Suppose we have a range of values [0, c]. Now let us divide [0, °] into four dis-
joint intervals: [0, 90], [90, 180], [180, 500], and [500, «]. We observe four failures
in the first interval, two failures in the second interval, two failures in the third in-
terval, and three in the last interval. For each i, £; = np;. The resulting computations
for this case, where n = 12, are given in Table 11.15.

In this example, the chi-square statistic is 2.13. We refer to the chi-square table
(Appendix D) for the distribution under the null hypothesis. Since k=4 and g = 1,
the degrees of freedom are k — g — 1 = 2. From Appendix D we see that the p-value
is between 0.10 and 0.90. So we cannot reject the null hypothesis of a negative ex-
ponential distribution. The data seem to fit the negative exponential distribution
reasonably well.

11.11 LIMITATIONS TO CHI-SQUARE AND EXACT ALTERNATIVES

The following are some general caveats regarding use of the chi-square test. These
guidelines are based on statisticians’ experiences with the test. Many statisticians

TABLE 11.15. Chi-Square Test for Negative Exponential Distribution

Observed
Interval (0 Expected (E) (O-EyZ/IE
[0, 90] 4 12(1 - exp[(0.002287)90]) = 0.186(12) =2.23 (4 —2.23)2/2.23 = 1.405

(90, 180] 3 12(exp[—(0.002287)90] — exp[—(0.002287)180]) (3 —2.85)%/2.85 = 0.008
=(0.834—-0.597)(12) = (0.237)12 =2.85

(180, 500] 2 12(exp[—(0.002287)180] — exp[—(0.002287)500]) (2 —3.34)%/3.34 = 0.538
=(0.597-0.319)(12) = (0.278)12 =3.34

(500, ) 3 12 (exp[—(0.002287)500] = 0.319(12) = 3.828 (3 —3.828)%/3.828 =0.179

Total 2.130
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have identified the limitations of the chi-square test through the use of simulations.
As noted, the test should be used for data in the form of counts, enumerations, or
frequencies. A particular cell should not have small frequencies (e.g., n < 5), and
the grand total N should be greater than 20. The chi-square test is an approximate
test, and the approximation can be poor when the cell frequencies are low. In a two-
way or N-way table, the subjects being classified should be chosen independently
(with the exception of McNemar’s test). For example, if one is studying sex differ-
ences, one should choose samples of males and females independently.

An example of nonindependent selection would be to choose men and women
who are spouses. Similarly, pairs of twins would not qualify as independently se-
lected. In the special case of a 2 x 2 table, Yates’ correction gives an improved esti-
mation of chi-square. Yates’ correction is built into the calculation formula as N/2
and gives an improved estimate of y*> when df = 1.

Given that the chi-square test does not involve parameter values directly, it does
not have a corresponding confidence interval. Furthermore, it is not easy to calcu-
late the required sample sizes (power testing) for a chi-square test. However, the
software package StatXact 5.0, described in Chapter 16, calculates power and sam-
ple sizes for the analogous exact tests. .

Among the alternatives for the 2 x 2 table is Fisher’s exact test, which Chapter
14 (section on permutation tests) will cover in detail. We use Fisher’s exact test for
problems that involve small sizes when expected cell values are smaller than 5. This
test is based on specifying that the row and column totals are fixed. Various other
exact tests are described in detail in the StatXact users guide.

11.12 EXERCISES

11.1 State in your words definitions of the following terms:
a. Chi-square
b. Contingency table (cross-tabulation)
c. Correlated proportions
d. Odds ratio
e. Goodness of fit test
f. Test for independence of two variables
g. Homogeneity

11.2 A hospital accrediting agency reported that the survival rate for patients who
had coronary bypass surgery in tertiary care centers was 93%. A sample of
community hospitals had an average survival rate of 88%. Were the survival
rates for the two types of hospitals the same or different?

11.3 Researchers at an academic medical center performed a clinical trial to study
the effectiveness of a new medication to lower blood sugar. Diabetic patients
were assigned at random to treatment and control conditions. Patients in both
groups received counseling regarding exercise and weight loss. Among the
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TABLE 11.16. Cross-Tabulation of Lifetime Smoking and Self-Reported Health

Status
Have you smoked 100 cigarettes in your life?

Self-reported health status Yes No Total
Excellent 142 227 369
Very good/good 368 475 843
Fair/poor 122 155 277
Total 632 857 1,489
Source: Robert Friis, Long Beach Community Health Study (1998 interview wave).

114

11.5

11.6

TABL

sample of 200 treatment patients, 60% were found to have normal fasting
blood glucose levels at follow-up. Among an equal number of controls, only
15% had normal fasting blood glucose levels at follow-up. Demonstrate that
the new medication was effective in treating hyperglycemia.

In a community health survey, individuals were randomly selected for partic-
ipation in a telephone interview. The study used a cross-sectional design.
Table 11.16 shows the results for the cross-tabulation of cigarette smoking
and health status. Determine whether the relationship between smoking 100
cigarettes during one’s life and self-reported health status is statistically sig-
nificant at the o = 0.05 level.

In the community health survey described in the previous exercise, respon-
dents’ smoking status was classified into three categories (smoker, quitter,
never smoker). Table 11.17 shows the results for the cross-tabulation of
smoking status and health status. Determine whether the relationship is statis-
tically significant at the a = 0.05 level. Compare your results with those ob-
tained in the previous exercise.

In the same community health survey, the investigators wanted to know

whether smoking status varied according to race/ethnicity. Race was mea-
sured according to five categories (African American, Asian, Hispanic, Na-

E 11.17. Cross-Tabulation of Smoking Status and Self-Reported Health Status

Smoking Status

Self-reported health status Smoker Quitter Never Total
Excellent 40 100 229 369
Very good/good 172 189 485 846
Fair/poor 61 63 153 277
Total 273 352 867 1,492
Source: Robert Friis, Long Beach Community Health Study (1998 interview wave).
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TABLE 11.18. Cross-Tabulation of Race/Ethnicity and Self-Reported Health Status

Smoking Status

Race/Ethnicity Smoker Quitter Never Total
African American 45 41 123 209
Asian 13 12 53 78
Hispanic 50 75 311 436
Native American 10 5 14 29
European American 144 201 350 695
Total 262 334 851 1

447

b}

Source:

11.7

11.8

Robert Friis, Long Beach Community Health Study (1998 interview wave).

tive American, European American) and smoking status was classified ac-
cording to the same categories as in Exercise 11.6. Table 11.18 shows the re-
sults for the cross-tabulation of race and health status. Does smoking status
vary according to race? Perform the test at the o = 0.05 level.

In the community health survey, the investigators studied the relationship be-
tween alcohol drinking status (defined according to four categories) and smok-
ing status (defined according to three categories). Alcohol drinking status was
classified according to the categories of current drinker, former drinker, occa-
sional drinker, and never drinker. Table 11.19 shows the resulting cross-tabu-
lation. Inspect the data shown in the table. Do you think that there is an associ-
ation between alcohol drinking status and smoking status? Confirm your
subjective impressions by performing a statistical test at the & = 0.05 level.

A multiphasic health examination was administered to 1000 employees of a
pharmaceutical firm. 50% of these employees had elevated diastolic blood
pressure and 45% had hypoglycemia. A total of 37% of employees had both
elevated diastolic blood pressure and hyperglycemia. Create a 2 x 2 contin-
gency table and fill in all cells of the table. Is the association between hyper-
tension and hyperglycemia statistically significant?

TABLE 11.19. Cross-Tabulation of Smoking Status and Alcohol Drinking Status

Alcohol Drinking Status

Smoking Status Current Former Occasional Never Total
Heavy 56 10 7 8 81
Moderate 78 16 17 6 117
Light 52 10 7 5 74
Total 186 36 31 19 272

Source: Robert Friis, Long Beach Community Health Study (1998 interview wave).
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CHAPTER 12

Correlation, Linear Regression,
and Logistic Regression

Biological phenomena in their numerous phases, economic and
social, were seen to be only differentiated from the physical by
the intensity of their correlations. The idea Galton placed before
himself was to represent by a single quantity the degree of rela-
tionships, or of partial causality between the different variables

of our everchanging universe.
—XKarl Pearson, The Life, Letters, and Labours of Francis Galton,
Volume IIIA, Chapter XIV, p. 2

The previous chapter presented various chi-square tests for determining whether or
not two variables that represented categorical measurements were significantly as-
sociated. The question arises about how to determine associations between vari-
ables that represent higher levels of measurement. This chapter will cover the Pear-
son product moment correlation coefficient (Pearson correlation coefficient or
Pearson correlation), which is a method for assessing the association between two
variables that represent either interval- or ratio-level measurement.

Remember from the previous chapter that examples of interval level measure-
ment are Fahrenheit temperature and 1.Q. scores; ratio level measures include blood
pressure, serum cholesterol, and many other biomedical research variables that
have a true zero point. In comparison to the chi-square test, the correlation coeffi-
cient provides additional useful information—namely, the strength of association
between the two variables.

We will also see that linear regression and correlation are related because there
are formulas that relate the correlation coefficient to the slope parameter of the re-
gression equation.. In contrast to correlation, linear regression is used for predicting
status on a second variable (e.g., a dependent variable) when the value of a predic-
tor variable (e.g., an independent variable) is known.

Another technique that provides information about the strength of association
between a predictor variable (e.g., a risk factor variable) and an outcome variable

Introductory Biostatistics for the Health Sciences, by Michael R. Chernick 251
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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(e.g., dead or alive) is logistic regression. In the case of a logistic regression analy-
sis, the outcome is a dichotomy; the predictor can be selected from variables that
represent several levels of measurement (such as categorical or ordinal), as we will
demonstrate in Section 12.9. For example, a physician may use a patient’s total
serum cholesterol value and race to predict high or low levels of coronary heart dis-
ease risk.

12.1 RELATIONSHIPS BETWEEN TWO VARIABLES

In Figure 12.1, we present examples of several types of relationships between two
variables. Note that the horizontal and vertical axes are denoted by the symbols X
and Y, respectively.

Both Figures 12.1A and 12.1B represent linear associations, whereas the remain-
ing figures illustrate nonlinear associations. Figures 12.1A and 12.1B portray direct
and inverse linear associations, respectively. The remaining figures represent non-
linear associations, which cannot be assessed directly by using a Pearson correla-
tion coefficient. To assess these types of associations, we will need to apply other
statistical methods such as those described in Chapter 14 (nonparametric tests). In
other cases, we can use data transformations, a topic that will be discussed briefly
later in this text.

12.2 USES OF CORRELATION AND REGRESSION

The Pearson correlation coefficient (p), is a population parameter that measures the
degree of association between two variables. It is a natural parameter for a distribu-
tion called the bivariate normal distribution. Briefly, the bivariate normal distribu-
tion is a probability distribution for X and Y that has normal distributions for both X
and Y and a special form for the density function for the variable pairs. This form al-
lows for positive or negative dependence between X and Y.

The Pearson correlation coefficient is used for assessing the linear (straight line)
association between an X and a Y variable, and requires interval or ratio measure-
ment. The symbol for the sample correlation coefficient is , which is the sample es-
timate of p that can be obtained from a sample of pairs (X, Y) of values for X and Y.
The correlation varies from negative one to positive one (—1 = r = +1). A correla-
tion of + 1 or —1 refers to a perfect positive or negative X, Y relationship, respective-
ly (refer to Figures 12.1A and 12.1B). Data falling exactly on a straight line indi-
cates that |r| = 1.

The reader should remember that correlation coefficients merely indicate associ-
ation between X and Y, and not causation. If || = 1, then all the sample data fall ex-
actly on a straight line. This one-to-one association observed for the sample data
does not necessarily mean that |p| = 1; but if the number of pairs is large, a high val-
ue for r suggests that the correlation between the variable pairs in the population is
high.
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Previously, we defined the term “variance” and saw that it is a special parameter
of a univariate normal distribution. With respect to correlation and regression, we
will be considering the bivariate normal distribution. Just as the univariate normal
distribution has mean and variance as natural parameters in the density function, so
too is the correlation coefficient a natural parameter of the bivariate normal distrib-
ution. This point will be discussed later in this chapter.

Many biomedical examples call for the use of correlation coefficients: A physi-
cian might want to know whether there is an association between total serum cho-
lesterol values and triglycerides. A medical school admission committee might
want to study whether there is a correlation between grade point averages of gradu-
ates and MCAT scores at admission. In psychiatry, interval scales are used to mea-
sure stress and personality characteristics such as affective states. For example, re-
searchers have studied the correlation between Center for Epidemiologic Studies
Depression (CESD) scores (a measure of depressive symptoms) and stressful life
events measures.

Regression analysis is very closely related to linear correlation analysis. In fact,
we will learn that the formulae for correlation coefficients and the slope of a regres-
sion line are similar and functionally related. Thus far we have dealt with bivariate
examples, but linear regression can extend to more than one predictor variable. The
linearity requirement in the model is for the regression coefficients and not for the
predictor variables. We will provide more information on multiple regression in
Section 12.9.

Investigators use regression analysis very widely in the biomedical sciences. As
noted previously, the researchers use an independent variable to predict a dependent
variable. For example, regression analysis may be used to assess a dose—response
relationship for a drug administered to laboratory animals. The drug dose would be
considered the independent variable, and the response chosen would be the depen-
dent variable. A dose—response relationship is a type of relationship in which in-
creasing doses of a substance produce increasing biological responses; e.g., the re-
lationship between number of cigarettes consumed and incidence of lung cancer is
considered to be a dose-response relationship.

12.3 THE SCATTER DIAGRAM

A scatter diagram is used to portray the relationship between two variables; the rela-
tionship occurs in a sample of ordered (X, Y) pairs. One constructs such a diagram by
plotting, on Cartesian coordinates, X and Y measurements (X and Y pairs) for each
subject. As an example of two highly correlated measures, consider systolic and di-
astolic blood pressure. Remember that when your blood pressure is measured, you
are given two values (e.g., 120/70). Across a sample of subjects, these two values are
known to be highly correlated and are said to form a linear (straight line) relationship.

Further, as r decreases, the points on a scatter plot diverge from the line of best
fit. The points form a cloud—a scatter cloud—of dots; two measures that are uncor-
related would produce the interior of a circle or an ellipse without tilt. Table 12.1
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TABLE 12.1. Systolic and Diastolic Blood Pressure Values for a Sample of 48

Elderly Men

Systolic Diastolic  Systolic  Diastolic  Systolic Diastolic ~ Systolic  Diastolic

BP BP BP BP BP BP BP BP
140 78 117 75 145 81 146 83
170 101 141 83 151 83 162 83
141 84 120 76 134 85 158 77
171 92 163 89 178 99 152 86
158 80 155 97 128 73 152 93
175 91 114 76 147 78 106 67
151 78 151 90 146 80 147 79
152 82 136 87 160 91 111 71
138 81 143 84 173 79 149 83
136 80 163 75 143 87 137 77
173 95 143 81 152 69 136 84
143 84 163 94 137 85 132 79

presents blood pressure data collected from a sample of 48 elderly men who partic-
ipated in a study of cardiovascular health.

In order to produce a scatter diagram, we take a piece of graph paper and draw X
and Y axes. The X axis (horizontal axis) is called the abscissa; it is also used to de-
note the independent variable that we have identified in our analytic model. The Y
axis (vertical axis), or ordinate, identifies the dependent, or outcome, variable. We

then plot variable pairs on the graph paper.

For example, the first pair of measurements (140, 78) from Table 12.1 comprises
a point on the scatter plot. When we plot all of the pairs in the table, the result is the
scatter diagram shown in Figure 12.2. For the blood pressure data, the choice of the
X or Y axes is arbitrary, for there is no independent or dependent variable.
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Figure 12.2. Scatter diagram of systolic and diastolic blood pressure (using data from Table 12.1).
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124 PEARSON’S PRODUCT MOMENT CORRELATION
COEFFICIENT AND ITS SAMPLE ESTIMATE

The formulae for a Pearson sample product moment correlation coefficient (also
called a Pearson correlation coefficient) are shown in Equations 12.1 and 12.2. The
deviation score formula for r is

D (X=X)(Y-Y)
r= n":l = (12.1)
\/Z (XJQZZ (Y-1p
The calculation formula for » is
(S
A= A=A
,= (12.2)

i=1

el D

n n

We will apply these formulae to the small sample of weight and height measure-
ments shown in Table 12.2. The first calculation uses the deviation score formula
(i.e., the difference between each observation for a variable and the mean of the
variable).

The data needed for the formulae are shown in Table 12.3. When using the cal-
culation formula, we do not need to create difference scores, making the calcula-
tions a bit easier to perform with a hand-held calculator.

We would like to emphasize that the Pearson product moment correlation mea-
sures the strength of the linear relationship between the variables X and Y. Two
variables X and Y can have an exact non-linear functional relationship, implying a
form of dependence, and yet have zero correlation. An example would be the func-
tion y = x? for x between —1 and +1. Suppose that X is uniformly distributed on [0,
1] and Y = X, without any error term. For a bivariate distribution, r is an estimate of
the correlation (p) between X and Y, where

Cov(X, 1)
V' Var(X)Var(Y)

The covariance between X and Y defined by Cov(X, Y) is E[(X — w,)(Y — u,)], where
M, and w, are, respectively, the population means for X and Y. We will show that
Cov(X, Y) = 0 and, consequently, p = 0. For those who know calculus, this proof is
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TABLE 12.2. Deviation Score Method for Calculating r (Pearson Correlation
Coefficient)

ID Weight (X) (X-X) (X-X)? Height() (Y-¥) (Y- X-X)(-Y)

1 148 -6.10 37.21 64 1.00 1.00 -6.10
2 172 17.90 320.41 63 0.00 0.00 0.00
3 203 48.90 2391.21 67 4.00 16.00 195.60
4 109 —45.10 2034.01 60 -3.00 9.00 135.30
5 110 —44.10 1944.81 63 0.00 0.00 0.00
6 134 -20.10 404.01 62 —-1.00 1.00 20.10
7 195 40.90 1672.81 59 —4.00 16.00 -163.60
8 147 -7.10 50.41 62 —1.00 1.00 7.10
9 153 -1.10 1.21 66 3.00 9.00 -3.30
10 170 15.90 252.81 64 1.00 1.00 15.90
3 1541 9108.90 630 54.00 201.00
X=1541/10 = 154.10 Y =630/10 = 63.00
- 2 X=X -1) 20 20100 _
\/ n — — (9108.90)(54) 70134
DK=X? D (Yi-Y)?
=1 i=1
TABLE 12.3. Calculation Formula Method for Calculating r (Pearson
Correlation Coefficient)
ID Weight (X) X, Height (Y) Y, XY
1 148 21,904 64 4,096 9,472
2 172 29,584 63 3,969 10,836
3 203 41,209 67 4,489 13,601
4 109 11,881 60 3,600 6,540
5 110 12,100 63 3,969 6,930
6 134 17,956 62 3,844 8,308
7 195 38,025 59 3,481 11,505
8 147 21,609 62 3,844 9,114
9 153 23,409 66 4356 10,098
10 170 28,900 64 4,096 10,880
3 1,541 246,577 630 39,744 97,284
" (Zx,-)(z Y,)
i=1 i=1
ZXY - -
r n n 2 n 2
[Z)@(zx) }[ZW(ZYJ ]
i=1 i=1 i=1 i=1
n n
(1541)(630)
AT 201.00

[246577 - (1541)2][39744 - (630)2] "T 70134
10 10
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Display 12.1: Proof of Cov(X, ¥) =0 and p= 0 for Y = X?

E(X) = 0since | e = 0. also E(Y) = EQX?) = | = | ()= %3 +: - ;
1 —1 —1 -
Cov(X, ¥) = E[(X O)(Y %ﬂ — E[XY] - (%)E[X] — E[XY] since E[XY] = 0
. 1 x4+ 14— (71)4
Now E[XY] = E[X?] since ¥ = X? and E[X?] =J Xf(x)dx = T =0
1 _

shown in Display 12.1. However, understanding this proof is not essential to under-
standing the material in this section.

12.5 TESTING HYPOTHESES ABOUT THE
CORRELATION COEFFICIENT

In addition to assessing the strength of association between two variables, we need
to know whether their association is statistically significant. The test for the signifi-
cance of a correlation coefficient is based on a ¢ test. In Section 12.4, we presented r
(the sample statistic for correlation) and p (the population parameter for the correla-
tion between X and Y in the population).

The test for the significance of a correlation evaluates the null hypothesis (H,)
that p = 0 in the population. We assume Y =a + bX + &. Testing p =0 is the same as
testing b = 0. The term & in the equation is called the noise term or error term. It is
also sometimes referred to as the residual term. The assumption required for hy-
pothesis testing is that the noise term has a normal distribution with a mean of zero
and unknown variance o® independent of X. The significance test for Pearson’s cor-
relation coefficient is

V-2 (12.3)

where df = n — 2; n = number of pairs.
Referring to the earlier example presented in Table 12.2, we may test whether
the previously obtained correlation is significant by using the following procedure:

P
tdf:ﬁ V-2 df=10-2=8
0.29 0.29 0.29
1= ————= VI10-2= 8= 2.8284)=0.79
V1-(0.29) V1-(0.0729) 0.9629 ( )

where p = n.s., ¢ critical = 2.306, 2-tailed.
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12.6 CORRELATION MATRIX

A correlation matrix presents correlation coefficients among a group of variables.
An investigator portrays all possible bivariate combinations of a set of variables in
order to ascertain patterns of interesting associations for further study. Table 12.4
illustrates a matrix of correlations among seven risk factor variables for coronary
heart disease among a sample of older men. Note that the upper and lower diago-
nals of the grid are bisected by diagonal cells in which all of the values are 1.000,
meaning that these cells show the variables correlated with themselves. The upper
and lower parts of the diagonal are equivalent. The significance of the correlations
are indicated with one asterisk or two asterisks for a correlation that is significant
at the p < 0.05 or p < 0.01 levels, respectively. A correlation matrix can aid
in data reduction (identifying the most important variables in a data set) or de-
scriptive analyses (describing interesting patterns that may be present in the data
set).

12.7 REGRESSION ANALYSIS AND LEAST SQUARES
INFERENCE REGARDING THE SLOPE AND INTERCEPT
OF A REGRESSION LINE

We will first consider methods for regression analysis and then relate the concept of
regression analysis to testing hypotheses about the significance of a regression line.

TABLE 12.4. Matrix of Pearson Correlations among Coronary Heart Disease Risk
Factors, Men Aged 57-97 Years (n =70)

Weight | Height | Diastolic| Systolic

Age in in in blood blood | Cholesterol | Blood

years | pounds | inches | pressure| pressure level sugar

Age in years 1.000 | —0.021 |-0.033 | 0.104 0.276* | —0.063 |-0.039

Weight in pounds | —0.021 1.000 | 0.250*| 0.212 0.025 -0.030 |-0.136

Height in inches | —0.033 0.250* | 1.000 | 0.119 |-0.083 —0.111 0.057

Diastolic blood 0.104 0.212 | 0.119 | 1.000 0.671%%  0.182 0.111
pressure

Systolic blood 0.276%| 0.025 |-0.083 | 0.671**| 1.000 0.060 0.046
pressure

Cholesterol level |-0.063 | —0.030 |-0.111 | 0.182 0.060 1.000 0.006

Blood sugar —0.039 | -0.136 | 0.057 | 0.111 0.046 0.006 1.000

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).

Note: The correlation of a variable with itself is always 1.0 and has no particular value but is included as
the diagonal elements of the correlation matrix.



260 CORRELATION, LINEAR REGRESSION, AND LOGISTIC REGRESSION

The method of least squares provides the underpinnings for regression analysis. In
order to illustrate regression analysis, we present the simplified scatter plot of six
observations in Figure 12.3.

The figure shows a line of best linear fit, which is the only straight line that
minimizes the sum of squared deviations from each point to the regression line.
The deviations are formed by subtending a line that is parallel to the Y axis from
each point to the regression line. Remember that each point in the scatter plot is
formed from measurement pairs (x, y values) that correspond to the abscissa and
ordinate. Let Y correspond to a point on the line of best fit that corresponds to a
particular y measurement. Then Y — Y = the deviations of each observed ordinate
from Y, and

Z(Y Y)2 min

From algebra, we know that the general form of an equation for a straight line is:
Y = a + bX, where a = the intercept (point where the line crosses the ordinate) and
b = the slope of the line. The general form of the equation Y = a + bX assumes
Cartesian coordinates and the data points do not deviate from a straight line. In re-
gression analysis, we need to find the line of best fit through a scatterplot of (X, ¥)
measurements. Thus, the straight-line equation is modified somewhat to allow
for error between observed and predicted values for Y. The model for the regression
equation is ¥ = a + bX + e, where e denotes an error (or residual) term that is
estimated by ¥ — ¥ and 3(Y — Y)? = Se2. The prediction equation for ¥ is ¥ = a +
bX.

The term Y is called the expected value of ¥ for X. Y is also called the condition-
al mean. The prediction equation ¥ = a + bX is called the estimated regression
equation for ¥ on X. From the equation for a straight line, we will be able to esti-
mate (or predict) a value for Y if we are given a value for X. If we had the slope and
intercept for Figure 12.2, we could predict systolic blood pressure if we knew only
a subject’s diastolic blood pressure. The slope (b) tells us how steeply the line in-
clines; for example, a flat line has a slope equal to 0.

Y Intercept

Figure 12.3. Scatter plot of six observations.
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Substituting for Y in the sums of squares about the regression line gives 3(¥— ¥)?
=3(Y - a - bX)>. We will not carry out the proof. However, solving for b, it can be
demonstrated that the slope is

n

D (XK-X0,-7)
R Z — (12.4)
X - X7

=1

Note the similarity between this formula and the deviation score formula for
shown in Section 12.4. The equation for a correlation coefficient is

n

> X -X)(Y,-Y)

i=1

e
\/Zl()c —702;(2—?)2

This equation contains the term 3,(Y; — Y)? in the denominator whereas the formu-
la for the regression equation does not. Using the formula for sample variance, we
may define

S (Y=Y
S§2=
Y ; n-1
and
5 (X —X)?
5i-3 02

The terms s, and s, are simply the square roots of these respective terms. Alterna-
tively, b = (S,/S,)r. The formulas for estimated y and the y-intercept are:

estimated y(f’ )Y =a+bX intercept (a): a = X-bX

In some instances, it may be easier to use the calculation formula for a slope, as
shown in Equation 12.5:

b= (12.5)




262 CORRELATION, LINEAR REGRESSION, AND LOGISTIC REGRESSION

In the following examples, we will demonstrate sample calculations using both
the deviation and calculation formulas. From Table 12.2 (deviation score method):

DE-X(Y-1)=201 > (X-X)?*=9108.90

201

=————=0.0221
b 9108.90 00

From Table 12.3 (calculation formula method):

SXY=97,284 SXSY=(1541)(630)  n=103X, = 246,577

1541)(630
97,284 - 124DE30)
10
b= (1541)? b=0.0221
246,577 — 10

Thus, both formulas yield exactly the same values for the slope. Solving for the y-
intercept (a), a = Y — bX = 63 — (0.0221)(154.10) = 59.5944.

The regression equation becomes ¥ = 59.5944 + 0.0221x or, alternatively, height
=59.5944 + 0.0221 weight. For a weight of 110 pounds we would expect height =
59.5944 + 0.0221(110) = 62.02 inches.

We may also make statistical inferences about the specific height estimate that
we have obtained. This process will require several additional calculations, includ-
ing finding differences between observed and predicted values for Y, which are
shown in Table 12.5.

We may use the information in Table 12.5 to determine the standard error of the
estimate of a regression coefficient, which is used for calculation of a confidence
interval about an estimated value of ¥(¥). Here the problem is to derive a confi-

TABLE 12.5. Calculations for Inferences about Predicted ¥ and Slope

Predicted

Weight (X) X-X  (X—X)> Height(Y) Height(Y) Y-¥ (Y-1)?
148 -6.1 37.21 64 62.8652 1.1348 1287771
172 179 32041 63 633956  —0.3956  0.156499
203 489 239121 67 64.0807 29193 8522312
109 451 2034.01 60 62.0033  —2.0033  4.013211
110 —44.1 194481 63 62.0254 09746  0.949845
134 —20.1 404.01 62 62.5558  —0.5558  0.308914
195 409  1672.81 59 63.9039  —4.9039  24.04824
147 7.1 50.41 62 62.8431  —0.8431  0.710818
153 -1.1 121 66 62.9757 3.0243  9.14639
170 159  252.81 64 633514  0.6486  0.420682

Total 1541 9108.9 49.56468
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dence interval about a single point estimate that we have made for Y. The calcula-
tions involve the sum of squares for error (SSE), the standard error of the estimate
(s,,), and the standard error of the expected Y for a given value of x [SE( Y)]. The
respectlve formulas for the confidence interval about ¥ are shown in Equation 12.6:

SSE=3(Y-Y)? sum of squares for error

SSE
S = 2 standard error of the estimate (12.6)
n—

x —X)? .
SE(Y) = S, x &K standard error of ¥ for a given value of x
2 (Xi — X)?

Y+ (tar, H)[SE( ¥)] is the confidence interval about ¥; e.g., t critical is 100(1 — a/2)
percentile of Student’s ¢ distribution with n — 2 degrees of freedom.

The sum of squares for error SSE = 3(Y — )9)2 =49.56468 (from Table 12.5). The
standard error of the estimate refers to the sample standard deviation associated
with the deviations about the regression line and is denoted by s,

o _ [SSE
= n-2

49.56468
S| 27286

The value S, , becomes useful for computing a confidence interval about a pre-
dicted value of Y. Previously, we determined that the regression equation for pre-
dicting height from weight was height = 59.5944 + 0.0221 weight. For a weight of
110 pounds we predicted a height of 62.02 inches. We would like to be able to com-
pute a confidence interval for this estimate. First we calculate the standard error of
the expected Y for a given value of [SE(Y)]:

SE()=S,, O ase [ MO (5402 - 05599
T xi-xp 10 91089 S

The 95% confidence interval is

From Table 12.5

Y = (tar, ,)[SE(Y)] 95% CI [62.02 + 2.306(0.5599)] = [63.31 <> 60.73]

We would also like to be able to determine whether the population slope (8) of
the regression line is statistically significant. If the slope is statistically significant,
there is a linear relationship between X and Y. Conversely, if the slope is not statis-
tically significant, we do not have enough evidence to conclude that even a weak
linear relationship exists between X and Y. We will test the following null hypothe-
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sis: H,: B=0. Let b = estimated population slope for X and Y. The formula for esti-
mating the significance of a slope parameter 3 is shown in Equation 12.7.

b- b
t= SE—(f) = SE—(b) test statistic for the significance of 3

(12.7)
Sy-x .
SE(b) = m standard error of the slope estimate [SE(b)]

The standard error of the slope estimate [SE(b)] is (note: refer to Table 12.5 and
the foregoing sections for the values shown in the formula)

SE(b) = 2.7286 =0.02859 t= 0.0221 =0.77 =
®)= 51089 T 002859 p=ns.

In agreement with the results for the significance of the correlation coefficient,
these results suggest that the relationship between height and weight is not statisti-
cally significant These two tests (i.e., for the significance of 7 and significance of )
are actually mathematically equivalent.

This ¢ statistic also can be used to obtain a confidence interval for the slope, name-
ly [b—t,_op SE(D), b+ t,_,» SE(b)], where the critical value for # is the 100(1 — a/2)
percentile for Student’s ¢ distribution with # — 2 degrees of freedom. This interval is
a 100(1 — @)% confidence interval for S.

Sometimes we have knowledge to indicate that the intercept is zero. In such
cases, it makes sense to restrict the solution to the value a = 0 and arrive at the least
squares estimate for b with this added restriction. The formula changes but is easily
calculated and there exist computer algorithms to handle the zero intercept case.

When the error terms are assumed to have a normal distribution with a mean of 0
and a common variance o2, the least squares solution also has the property of maxi-
mizing the likelihood. The least squares estimates also have the property of being
the minmum variance unbiased estimates of the regression parameters [see Draper
and Smith (1998) page 137]. This result is called the Gauss—Markov theorem [see
Draper and Smith (1998) page 136].

12.8 SENSITIVITY TO OUTLIERS, OUTLIER REJECTION,
AND ROBUST REGRESSION

Outliers refer to unusual or extreme values within a data set. We might expect many
biochemical parameters and human characteristics to be normally distributed, with
the majority of cases falling between +2 standard deviations. Nevertheless, in a
large data set, it is possible for extreme values to occur. These extreme values may
be caused by actual rare events or by measurement, coding, or data entry errors. We
can visualize outliers in a scatter diagram, as shown in Figure 12.4.

The least squares method of regression calculates “b” (the regression slope) and
“g” (the intercept) by minimizing the sum of squares [S(Y — ¥)?] about the regres-
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Figure 12.4. Scatter diagram with outliers.

sion line. Outliers cause distortions in the estimates obtained by the least squares
method. Robust regression techniques are used to detect outliers and minimize their
influence in regression analyses.

Even a few outliers may impact both the intercept and the slope of a regression
line. This strong impact of outliers comes about because the penalty for a deviation
from the line of best fit is the square of the residual. Consequently, the slope and in-
tercept need to be placed so as to give smaller deviations to these outliers than to
many of the more “normal” observations.

The influence of outliers also depends on their location in the space defined by
the distribution of measurements for X (the independent variable). Observations for
very low or very high values of X are called leverage points and have large effects
on the slope of the line (even when they are not outliers). An alternative to least
squares regression is robust regression, which is less sensitive to outliers than is the
least squares model. An example of robust regression is median regression, a type
of quantile regression, which is also called a minimum absolute deviation model.

A very dramatic example of a major outlier was the count of votes for Patrick
Buchanan in Florida’s Palm Beach County in the now famous 2000 presidential
election. Many people believe that Buchanan garnered a large share of the votes
that were intended for Gore. This result could have happened because of the confus-
ing nature of the so-called butterfly ballot.

In any case, an inspection of two scatter plots (one for vote totals by county for
Buchanan versus Bush, Figure 12.5, and one for vote totals by county for Buchanan
versus Gore, Figure 12.6) reveals a consistent pattern that enables one to predict the
number of votes for Buchanan based on the number of votes for Bush or Gore. This
prediction model would work well in every county except Palm Beach, where the
votes for Buchanan greatly exceeded expectations. Palm Beach was a very obvious
outlier. Let us look at the available data published over the Internet.

Table 12.6 shows the counties and the number of votes that Bush, Gore, and
Buchanan received in each county. The number of votes varied largely by the size
of the county; however, from a scatter plot you can see a reasonable linear relation-
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TABLE 12.6. 2000 Presidential Vote by County in Florida

County Gore Bush Buchanan
Alachua 47,300 34,062 262
Baker 2,392 5,610 73
Bay 18,850 38,637 248
Bradford 3,072 5,413 65
Brevard 97,318 115,185 570
Broward 386,518 177,279 789
Calhoun 2,155 2,873 90
Charlotte 29,641 35,419 182
Citrus 25,501 29,744 270
Clay 14,630 41,745 186
Collier 29,905 60,426 122
Columbia 7,047 10,964 89
Dade 328,702 289,456 561
De Soto 3,322 4,256 36
Dixie 1,825 2,698 29
Duval 107,680 152,082 650
Escambia 40,958 73,029 504
Flagler 13,891 12,608 83
Franklin 2,042 2,448 33
Gadsden 9,565 4,750 39
Gilchrist 1,910 3,300 29
Glades 1,420 1,840 9
Gulf 2,389 3,546 71
Hamilton 1,718 2,153 24
Hardee 2,341 3,764 30
Hendry 3,239 4,743 22
Hernando 32,644 30,646 242
Highlands 14,152 20,196 99
Hillsborough 169,529 180,713 845
Holmes 2,154 4,985 76
Indian River 19,769 28,627 105
Jackson 6,868 9,138 102
Jefferson 3,038 2,481 29
Lafayette 788 1,669 10
Lake 36,555 49,965 289
Lee 73,530 106,123 306
Leon 61,425 39,053 282
Levy 5,403 6,860 67
Liberty 1,011 1,316 39
Madison 3,011 3,038 29
Manatee 49,169 57,948 272
Marion 44,648 55,135 563
Martin 26,619 33,864 108
Monroe 16,483 16,059 47
Nassau 6,952 16,404 90

Okaloosa 16,924 52,043 267
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TABLE 12.6. Continued

County Gore Bush Buchanan
Okeechobee 4,588 5,058 43
Orange 140,115 134,476 446
Osceola 28,177 26,216 145
Palm Beach 268,945 152,846 3,407
Pasco 69,550 68,581 570
Pinellas 200,212 184,884 1,010
Polk 74,977 90,101 538
Putnam 12,091 13,439 147
Santa Rosa 12,795 36,248 311
Sarasota 72,854 83,100 305
Seminole 58,888 75,293 194
St. Johns 19,482 39,497 229
St. Lucie 41,559 34,705 124
Sumter 9,634 12,126 114
Suwannee 4,084 8,014 108
Taylor 2,647 4,051 27
Union 1,399 2,326 26
Volusia 97,063 82,214 396
Wakulla 3,835 4,511 46
Walton 5,637 12,176 120
Washington 2,796 4,983 88

ship between; for instance, the total number of votes for Bush and the total number
for Buchanan. One could form a regression equation to predict the total number of
votes for Buchanan given that the total number of votes for Bush is known. Palm
Beach County stands out as a major exception to the pattern. In this case, we have
an outlier that is very informative about the problem of the butterfly ballots.

Palm Beach County had by far the largest number of votes for Buchanan (3407
votes). The county that had the next largest number of votes was Pinellas County,
with only 1010 votes for Buchanan. Although Palm Beach is a large county,
Broward and Dade are larger; yet, Buchanan gained only 789 and 561 votes, re-
spectively, in the latter two counties.

Figure 12.5 shows a scatterplot of the votes for Bush versus the votes for
Buchanan. From this figure, it is apparent that Palm Beach County is an outlier.

Next, in Figure 12.6 we see the same pattern we saw in Figure 12.5 when com-
paring votes for Gore to votes for Buchanan, and in Figure 12.7, votes for Nader to
votes for Buchanan. In each scatter plot, the number of votes for any candidate is
proportional to the size of each county, with the exception of Palm Beach County.
We will see that the votes for Nader correlate a little better with the votes for
Buchanan than do the votes for Bush or for Gore; and the votes for Bush correlate
somewhat better with the votes for Buchanan than do the votes for Gore. If we ex-
clude Palm Beach County from the scatter plot and fit a regression function with or
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Figure 12.5. Florida presidential vote (all counties).

without an intercept term, we can use this regression function to predict the votes
for Buchanan.

For example, Figures 12.8 and Figures 12.9 show the regression equations with
and without intercepts, respectively, for predicting votes for Buchanan as a function
of votes for Nader based on all counties except Palm Beach. We then use these
equations to predict the Palm Beach outcome; then we compare our results to the
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Figure 12.6. Florida presidential votes (all counties).
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Figure 12.7. Florida presidential votes (all counties).

3407 votes that actually were counted in Palm Beach County as votes for
Buchanan.

Since Nader received 5564 votes in Palm Beach County, we derive, using the
equation in Figure 12.8, the prediction of Y for Buchanan: ¥ = 0.1028(5564) +
68.93 = 640.9092. Or, if we use the zero intercept formula, we have ¥ = 0.1194
(5564) = 664.3416.

Similar predictions for the votes for Buchanan using the votes for Bush as the
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Figure 12.8. Florida presidential vote (Palm Beach county omitted).
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Figure 12.9. Florida presidential vote (Palm Beach county omitted).

covariate X give the equations ¥ = 0.0035 X + 65.51 = 600.471 and ¥ = 0.004 X =
611.384 (zero intercept formula), since Bush reaped 152,846 votes in Palm Beach
County. Votes for Gore also could be used to predict the votes for Buchanan, al-
though the correlation is lower (» = 0.7940 for the equation with intercept, and r =
0.6704 for the equation without the intercept).

Using the votes for Gore, the regression equations are ¥ = 0.0025 X + 109.24 and
¥ =0.0032 X, respectively, for the fit with and without the intercept. Gore’s 268,945
votes in Palm Beach County lead to predictions of 781.6025 and 1075.78 using the
intercept and nonintercept equations, respectively.

In all cases, the predictions of votes for Buchanan ranged from around 600 votes
to approximately 1076 votes—far less than the 3407 votes that Buchanan actually
received. This discrepancy between the number of predicted and actual votes leads
to a very plausible argument that at least 2000 of the votes awarded to Buchanan
could have been intended for Gore.

An increase in the number of votes for Gore would eliminate the outlier with re-
spect to the number of votes cast for Buchanan that were detected for Palm Beach
County. This hypothetical increase would be responsive to the complaints of many
voters who said they were confused by the butterfly ballot. A study of the ballot
shows that the punch hole for Buchanan could be confused with Gore’s but not with
that of any other candidate. A better prediction of the vote for Buchanan could be
obtained by multiple regression. We will review the data again in Section 12.9.

The undo influence of outliers on regression equations is one of the problems
that can be resolved by using robust regression techniques. Many texts on regres-
sion models are available that cover robust regression and/or the regression diag-
nostics that can be used to determine when the assumptions for least squares regres-
sion do not apply. We will not go into the details of these topics; however, in
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Section 12.12 (Additional Reading), we provide the interested reader with several
good texts. These texts include Chatterjee and Hadi (1988); Chatterjee, Price, and
Hadi (1999); Ryan (1997); Montgomery, and Peck (1992); Myers (1990); Draper,
and Smith (1998); Cook (1998); Belsley, Kuh, and Welsch (1980); Rousseeuw and
Leroy (1987); Bloomfield and Steiger (1983); Staudte and Sheather (1990); Cook
and Weisberg (1982); and Weisberg (1985).

Some of the aforementioned texts cover diagnostic statistics that are useful for
detecting multicollinearity (a problem that occurs when two or more predictor vari-
ables in the regression equation have a strong linear interrelationship). Of course,
multicollinearity is not a problem when one deals only with a single predictor.
When relationships among independent and dependent variables seem to be nonlin-
ear, transformation methods sometimes are employed. For these methods, the least
squares regression model is fitted to the data after the transformation [see Atkinson
(1985) or Carroll and Ruppert (1988)].

As is true of regression equations, outliers can adversely affect estimates of the
correlation coefficient. Nonparametric alternatives to the Pearson product moment
correlation exist and can be used in such instances. One such alternative, called
Spearman’s rho, is covered in Section 14.7.

12.9 GALTON AND REGRESSION TOWARD THE MEAN

Francis Galton (1822—1911), an anthropologist and adherent of the scientific beliefs
of his cousin Charles Darwin, studied the heritability of such human characteristics
as physical traits (height and weight) and mental attributes (personality dimensions
and mental capabilities). Believing that human characteristics could be inherited, he
was a supporter of the eugenics movement, which sought to improve human beings
through selective mating.

Given his interest in how human traits are passed from one generation to the
next, he embarked in 1884 on a testing program at the South Kensington Museum
in London, England. At his laboratory in the museum, he collected data from fa-
thers and sons on a range of physical and sensory characteristics. He observed
among his study group that characteristics such as height and weight tended to be
inherited. However, when he examined the children of extremely tall parents and
those of extremely short parents, he found that although the children were tall or
short, they were closer to the population average than were their parents. Fathers
who were taller than the average father tended to have sons who were taller than av-
erage. However, the average height of these taller than average sons tended to be
lower than the average height of their fathers. Also, shorter than average fathers
tended to have shorter than average sons; but these sons tended to be taller on aver-
age than their fathers.

Galton also conducted experiments to investigate the size of sweet pea plants
produced by small and large pea seeds and observed the same phenomenon for a
successive generation to be closer to the average than was the previous generation.
This finding replicated the conclusion that he had reached in his studies of humans.
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Galton coined the term “regression,” which refers to returning toward the aver-
age. The term “linear regression” got its name because of Galton’s discovery of this
phenomenon of regression toward the mean. For more specific information on this
topic, see Draper and Smith (1998), page 45.

Returning to the relationship that Galton discovered between the height at adult-
hood of a father and his son, we will examine more closely the phenomenon of re-
gression toward the mean. Galton was one of the first investigators to create a scat-
ter plot in which on one axis he plotted heights of fathers and on the other, heights
of sons. Each single data point consisted of height measurements of one father—son
pair. There was clearly a high positive correlation between the heights of fathers
and the heights of their sons. He soon realized that this association was a mathemat-
ical consequence of correlation between the variables rather than a consequence of
heredity.

The paper in which Galton discussed his findings was entitled “Regression to-
ward mediocrity in hereditary stature.” His general observations were as follows:
Galton estimated a child’s height as

2X-X)
3

Y=Y+

where Y is the predicted or estimated child’s height, Y is the average height of the
children, X is the parent’s height for that child, and X is the average height of all
parents. Apparently, the choice of X was a weighted average of the mother’s and fa-
ther’s heights.

From the equation you can see that if the parent has a height above the mean for
parents, the child also is expected to have a greater than average height among the
children, but the increase ¥ = Y is only 2/3 of the predicted increase of the parent
over the average for the parents. However, the interpretation that the children’s
heights tend to move toward mediocrity (i.e., the average) over time is a fallacy
sometimes referred to as the regression fallacy.

In terms of the bivariate normal distribution, if Y represents the son’s height and
X the parent’s height, and the joint distribution has mean u, for X, mean u, for ¥,
standard deviation o, for X, standard deviation o, for Y, and correlation p,, between
Xand Y, then E(Y - p |X =x) = p,, 0, (x — )/ 0.

If we assume o, = 0, the equation simplifies to p,(x — w,). The simplified equa-
tion shows mathematically how the phenomenon of regression occurs, since 0 < p,,
< 1. All of the deviations of X about the mean must be reduced by the multiplier p,,
which is usually less than 1. But the interpretation of a progression toward medioc-
rity is incorrect. We see that our interpretation is correct if we switch the roles of X
and Y and ask what is the expected value of the parent’s height (X) given the son’s
height (Y), we find mathematically that E(X — u,|Y = y) = p,,, 0.(y — w,)/,, where
., is the overall mean for the population of the sons. In the case when o, = o,, the
equation simplifies to p,,(v — w,). So when y is greater than w,, the expected value
of X'moves closer to its overall mean (u,) than Y does to its overall mean (u,).
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Therefore, on the one hand we are saying that tall sons tend to be shorter than
their tall fathers, whereas on the other hand we say that tall fathers tend to be short-
er than their tall sons. The prediction for heights of sons based on heights of fathers
indicates a progression toward mediocrity; the prediction of heights of fathers based
on heights of sons indicates a progression away from mediocrity. The fallacy lies in
the interpretation of a progression. The sons of tall fathers appear to be shorter be-
cause we are looking at (or conditioning on) only the tall fathers. On the other hand,
when we look at the fathers of tall sons we are looking at a different group because
we are conditioning on the tall sons. Some short fathers will have tall sons and some
tall fathers will have short sons. So we err when we equate these conditioning sets.
The mathematics is correct but our thinking is wrong. We will revisit this fallacy
again with students’ math scores.

When trends in the actual heights of populations are followed over several gen-
erations, it appears that average height is increasing over time. Implicit in the re-
gression model is the contradictory conclusion that the average height of the popu-
lation should remain stable over time. Despite the predictions of the regression
model, we still observe the regression toward the mean phenomenon with each gen-
eration of fathers and sons.

Here is one more illustration to reinforce the idea that interchanging the predic-
tor and outcome variables may result in different conclusions. Michael Chernick’s
son Nicholas is in the math enrichment program at Churchville Elementary School
in Churchville, Pennsylvania. The class consists of fifth and sixth graders, who take
a challenging test called the Math Olympiad test. The test consists of five problems,
with one point given for each correct answer and no partial credit given. The possi-
ble scores on any exam are 0, 1, 2, 3, 4, and 5. In order to track students’ progress,
teachers administer the exam several times during the school year. As a project for
the American Statistical Association poster competition, Chernick decided to look
at the regression toward the mean phenomenon when comparing the scores on one
exam with the scores on the next exam.

Chernick chose to compare 33 students who took both the second and third ex-
ams. Although the data are not normally distributed and are very discrete, the linear
model provides an acceptable approximation; using these data, we can demonstrate
the regression toward the mean phenomenon. Table 12.7 shows the individual stu-
dent’s scores and the average scores for the sample for each test.

Figure 12.10 shows a scatter plot of the data along with the fitted least squares
regression line, its equation, and the square of the correlation.

The term R? (Pearson correlation coefficient squared) when multiplied by 100
refers to the percentage of variance that an independent variable (X) accounts for in
the dependent variable (Y). To find the Pearson correlation coefficient estimate of
the relationship between scores for exam # 2 and exam # 3, we need to find the
square root of R?, which is shown in the figure as 0.3901; thus, the Pearson correla-
tion coefficient is 0.6246. Of the total variance in the scores, almost 40% of the
variance in the exam # 3 score is explained by the exam # 2 score. The variance in
exam scores is probably attributable to individual differences among students. The
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TABLE 12.7. Math Olympiad Scores

Student Number Exam # 2 Score Exam # 3 Score
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average scores for exam # 2 and exam # 3 are 2.363 and 2.272, respectively (refer to
Table 12.7).

In Table 12.8, we use the regression equation shown in Figure 12.10 to predict
the individual exam # 3 scores based on the exam # 2 scores. We also can observe
the regression toward the mean phenomenon by noting that for scores of 0, 1, and 2
(all below the average of 2.272 for exam # 3), the predicted values for Y are higher
than the actual scores, but for scores of 3, 4, and 5 (all above the mean of 2.272), the
predicted values for Y are lower than the actual scores. Hence, all predicted scores
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Figure 12.10. Linear regression of olympiad scores of advanced students predicting exam # 3 from
exam # 2.

(Y's) for exam # 3 are closer to the overall class mean for exam # 3 than are the ac-
tual exam # 2 scores.

Note that a property of the least squares estimate is that if we use x = 2.363, the
mean for the x’s, then we get an estimate of y = 2.272, the mean of the y’s. So if a
student had a score that was exactly equal to the mean for exam # 2, we would pre-
dict that the mean of the exam # 3 scores would be that student’s score for exam # 3.
Of course, this hypothetical example cannot happen because the actual scores can
be only integers between 0 and 5.

Although the average scores on exam # 3 are slightly lower than the average
scores on exam # 2. the difference between them is not statistically significant, ac-
cording to a paired ¢ test (¢ = 0.463, df = 32).

TABLE 12.8. Regression toward the Mean Based on
Predicting Exam #3 Scores from Exam # 2 Scores

Exam # 2 Score Prediction for Exam # 3

Scores 0 1.0943
Below 1 1.5929
Mean 2 2.0915
Scores 3 2.5901
Above 4 3.0887
Mean 5 3.5873
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Figure 12.11. Linear regression of olympiad scores predicting exam # 2 from exam # 3, advanced stu-
dents (tests reversed).

To demonstrate that it is flawed thinking to surmise that the exam # 3 scores tend
to become more mediocre than the exam # 2 scores, we can turn the regression
around and use the exam # 3 scores to predict the exam # 2 scores. Figure 12.11 ex-
hibits this reversed prediction equation.

Of course, we see that the R? value remains the same (and also the Pearson cor-
relation coefficient); however, we obtain a new regression line from which we can
demonstrate the regression toward the mean phenomenon displayed in Table 12.9.

Since the average score on exam # 2 is 2.363, the scores 0, 1, and 2 are again be-
low the class mean for exam # 2 and the scores 3, 4, and 5 are above the class mean
for exam # 2. Among students who have exam # 3 scores below the mean, the pre-
diction is for their scores on exam # 2 to increase toward the mean score for exam #
2. The corresponding prediction among students who have exam # 3 scores above
the mean is that their scores on exam # 2 will decrease. In this case, the degree of
shift between actual and predicted scores is less than in the previous case in which

TABLE 12.9. Regression toward the Mean Based on
Predicting Exam # 2 Scores from Exam # 3 Scores

Exam # 3 Score Prediction for Exam # 2

Scores 0 0.585
Below 1 1.368
Mean 2 2.150
Scores 3 2.933
Above 4 3.715
Mean 5 4.498
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exam # 2 scores were used to predict exam # 3 scores. Again, according to an im-
portant property of least squares estimates, if we use the exam # 3 mean of 2.272 for
x, we will obtain the exam # 2 mean of 2.363 for y (which is exactly the same value
for the mean of exam # 2 shown in Table 12.7).

Now let’s examine the fallacy of our thinking regarding the trend in exam scores
toward mediocrity. The predicted scores for exam # 3 are closer to the mean score
for exam # 3 than are the actual scores on exam # 2. We thought that both the lower
predicted and observed scores on exam # 3 meant a trend toward mediocrity. But
the predicted scores for exam # 2 based on scores on exam # 3 are also closer to the
mean of the actual scores on exam # 2 than are the actual scores on exam # 3. This
finding indicates a trend away from mediocrity in moving in time from scores on
exam # 2 to scores on exam # 3. But this is a contradiction because we observed the
opposite of what we thought we would find. The flaw in our thinking that led to this
contradiction is the mistaken belief that the regression toward the mean phenome-
non implies a trend over time.

The fifth and sixth grade students were able to understand that the better students
tended to receive the higher grades and the weaker students the lower grades. But
chance also could play a role in a student’s performance on a particular test. So stu-
dents who received a 5 on an exam were probably smarter than the other students
and also should be expected to do well on the next exam. However, because the
maximum possible score was 5, by chance some students who scored 5 on one
exam might receive a score of 4 or lower on the next exam, thus lowering the ex-
pected score below 5.

Similarly, a student who earns a score of 0 on a particular exam is probably one
of the weaker students. As it is impossible to earn a score of less than 0, a student
who scores 0 on the first exam has a chance of earning a score of 1 or higher on the
next exam, raising the expected score above 0. So the regression to the mean phe-
nomenon is real, but it does not mean that the class as a group is changing. In fact,
the class average could stay the same and the regression toward the mean phenome-
non could still be seen.

12.10 MULTIPLE REGRESSION

The only difference between multiple linear regression and simple linear regression
is that the former introduces two or more predictor variables into the prediction
model, whereas the latter introduces only one. Although we often use a model of ¥
= a + BX for the form of the regression function that relates the predictor (indepen-
dent) variable X to the outcome or response (dependent) variable Y, we could also
use a model such as Y= a + BX? or Y= a + B InX (where In refers to the log func-
tion). The function is linear in the regression parameters « and 3.

In addition to the linearity requirement for the regression model, the other re-
quirement for regression theory to work is that the observed values of Y differ from
the regression function by an independent random quantity, or noise term (error
variance term). The noise term has a mean of zero and variance of ¢2. In addition,
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o? does not depend on X. Under these assumptions the method of least squares pro-
vides estimates a and b for « and B, respectively, which have desirable statistical
properties (i.e., minimum variance among unbiased estimators).

If the noise term also has a normal distribution, then its maximum likelihood es-
timator can be obtained. The resulting estimation is known as the Gauss—Markov
theorem, the derivation of which is beyond the scope of the present text. The inter-
ested reader can consult Draper and Smith (1998), page 136, and Jaske (1994).

As with simple linear regression, the Gauss—Markov theorem applies to multiple
linear regression. For a simple linear regression, we introduced the concept of a
noise, or error, term. The prediction equation for multiple linear regression also
contains an error term. Let us assume a normally distributed additive error term
with variance that is independent of the predictor variables. The least squares esti-
mates for the regression coefficients used in the multiple linear regression model
exist; under certain conditions, they are unique and are the same as the maximum
likelihood estimates [Draper and Smith (1998) page 137].

However, the use of matrix algebra is required to express the least squared esti-
mates. In practice, when there are two or more possible variables to include in a re-
gression equation, one new issue arises regarding the particular subset of variables
that should go into the final regression equation. A second issue concerns the prob-
lem of multicollinearity, i.e., the predictor variables are so highly intercorrelated
that they produce instability problems.

In addition, one must assess the correlation between the best fitting linear combi-
nation of predictor variables and the response variable instead of just a simple cor-
relation between the predictor variable and the response variable. The square of the
correlation between the set of predictor variables and the response variable is called
R2, the multiple correlation coefficient. The term R? is interpreted as the percentage
of the variance in the response variable that can be explained by the regression
function. We will not study multiple regression in any detail but will provide an ex-
ample to guide you through calculations and their interpretation.

The term “multicollinearity” refers to a situation in which there is a strong, close
to linear relationship among two or more predictor variables. For example, a predic-
tor variable X, may be approximately equal to 2.X, + 5X; where X, and X; are two
other variables that we think relate to our response variable Y.

To understand the concept of linear combinations, let us assume that we include
all three variables (X; + X, + X3) in a regression model and that their relationship is
exact. Suppose that the response variable Y =0.3 X; + 0.7 X, + 2.1 X; + ¢, where ¢
is normally distributed with mean 0 and variance 1.

Since X = 2X, + 5X;, we can substitute the right-hand side of this equation into
the expression for Y. After substitution we have Y=0.3(2 X, + 5X;) + 0.7X, + 2.1X;
+ &= 1.3X, + 3.6X; + &. So when one of the predictors can be expressed as a linear
function of the other, the regression coefficients associated with the predictor vari-
ables do not remain the same. We provided examples of two such expressions: ¥ =
0.3X, +0.7X, + 2.1X; + eand Y= 0.0X, + 1.3X, + 3.6X; + &. There are an infinite
number of possible choices for the regression coefficients, depending on the linear
combinations of the predictors.
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In most practical situations, an exact linear relationship will not exist; even a re-
lationship that is close to linear will cause problems. Although there will be (unfor-
tunately) a unique least squares solution, it will be unstable. By unstable we mean
that very small changes in the observed values of ¥ and the X’s can produce drastic
changes in the regression coefficients. This instability makes the coefficients im-
possible to interpret.

There are solutions to the problem that is caused by a close linear relationship
among predictors and the outcome variable. The first solution is to select only a
subset of the variables, avoiding predictor variables that are highly interrelated (i.e.,
multicollinear). Stepwise regression is a procedure that can help overcome multi-
collinearity, as is ridge regression. The topic of ridge regression is beyond the scope
of the present text; the interested reader can consult Draper and Smith (1998),
Chapter 17. The problem of multicollinearity is also called “ill-conditioning”; is-
sues related to the detection and treatment of regression models that are ill-condi-
tioned can be found in Chapter 16 of Draper and Smith (1998). Another approach to
multicollinearity involves transforming the set of X’s to a new set of variables that
are “orthogonal.” Orthogonality, used in linear algebra, is a technique that will
make the X’s uncorrelated; hence, the transformed variables will be well-condi-
tioned (stable) variables.

Stepwise regression is one of many techniques commonly found in statistical soft-
ware packages for multiple linear regression. The following account illustrates how
a typical software package performs a stepwise regression analysis. In stepwise re-
gression we start with a subset of the X variables that we are considering for inclusion
in a prediction model. At each step we apply a statistical test (often an F test) to de-
termine if the model with the new variable included explains a significantly greater
percentage of the variation in Y than the previous model that excluded the variable.

If the test is significant, we add the variable to the model and go to the next step
of examining other variables to add or drop. At any stage, we may also decide to
drop a variable if the model with the variable left out produces nearly the same per-
centage of variation explained as the model with the variable entered. The user
specifies critical values for F called the “F to enter” and the “F to drop” (or uses the
default critical values provided by a software program).

Taking into account the critical values and a list of X variables, the program pro-
ceeds to enter and remove variables until none meets the criteria for addition or
deletion. A variable that enters the regression equation at one stage may still be re-
moved at another stage, because the F' test depends on the set of variables currently
in the model at a particular iteration.

For example, a variable X may enter the regression equation because it has a
great deal of explanatory power relative to the current set under consideration.
However, variable X may be strongly related to other variables (e.g., U, V, and Z)
that enter later. Once these other variables are added, the variable X could provide
little additional explanatory information than that contained in variables U, V, and
Z. Hence, X is deleted from the regression equation.

In addition to multicollinearity problems, the inclusion of too many variables in
the equation can lead to an equation that fits the data very well but does not do near-
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ly as well as equations with fewer variables when predicting future values of V¥
based on known values of x. This problem is called overfitting. Stepwise regression
is useful because it reduces the number of variables in the regression, helping with
overfitting and multicollinearity problems. However, stepwise regression is not an
optimal subset selection approach; even if the F to enter criterion is the same as the
F to leave criterion, the resulting final set of variables can differ from one another
depending on the variables that the user specifies for the starting set.

Two alternative approaches to stepwise regression are forward selection and
backward elimination. Forward selection starts with no variables in the equation
and adds them one at a time based solely on an F to enter criterion. Backward elim-
ination starts with all the variables in the equation and drops variables one at a time
based solely on an F'to drop criterion. Generally, statisticians consider stepwise re-
gression to be better than either forward selection or backward elimination. Step-
wise regression is preferred to the other two techniques because it tends to test more
subsets of variables and generally settles on a better choice than either forward se-
lection or backward elimination. Sometimes, the three approaches will lead to the
same subset of variables, but often they will not.

To illustrate multiple regression, we will consider the example of predicting
votes for Buchanan in Palm Beach County based on the number of votes for Nader,
Gore, and Bush (refer back to Section 12.7). For all counties except Palm Beach,
we fit the model ¥ = a + B X; + B,X; + B3X; + &, where X represents votes for
Nader, X, votes for Bush, and X; votes for Gore; ¢ is a random noise term with
mean 0 and variance ¢ that is independent of X;, X,, and X; and a, B;, B,, and B35
are the regression parameters. We will entertain this model and others with one of
the predictor variables left out. To do this we will use the SAS procedure REG and
will show you the SAS code and output. You will need a statistical computer pack-
age to solve most multiple regression problems. Multiple regression, which can be
found in most of the common statistical packages, is one of the most widely used
applied statistical techniques.

The following three regression models were considered:

1. A model including votes for Nader, Bush, and Gore to predict votes for
Buchanan

2. A model using only votes for Nader and Bush to predict votes for Buchanan

3. A model using votes for Nader and Bush and an nteraction term defined as
the product of the votes for Nader and the votes for Bush

The coefficient for votes for Gore in model (1) was not statistically significant, so
model (2) is probably better than (1) for prediction. Model (3) provided a slightly bet-
ter fit than model (2), and under model (3) all the coefficients were statistically sig-
nificant. The SAS code (presented in italics) used to obtain the results is as follows:

data florida:
input county $ gore bush buchanan nader;
cards;
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alachua 47300 34062 262 3215
baker 2392 5610 73 53
bay 18850 38637 248 828

walton 5637 12176 120 265
washngtn 2796 4983 88 93

data florid2;
set florida;
if county = ‘palmbch’ then delete;
nbinter = nader*bush;

run,

proc reg;
model buchanan = nader bush gore;
run;

proc reg;
model buchanan = nader bush;

run,

proc reg;

model buchanan = nader bush nbinter;,
run;

The data statement at the beginning creates an SAS data set “florida” with
“county” as a character variable and “gore bush buchanan and nader” as numeric
variables. The input statement identifies the variable names and their formats ($ is
the symbol for a character variable). The statement “cards” indicates that the input
is to be read from the lines of code that follow in the program.

On each line, a character variable of 8 characters or less (e.g., alachua) first ap-
pears; this character variable is followed by four numbers indicating the values for
the numeric variables gore, bush, buchanan, and nader, in that order. The process is
continued until all 67 lines of counties are read. Note that, for simplicity, we show
only the input for the first three lines and the last two lines, indicating with three
dots that the other 62 counties fall in between. This simple way to read data is suit-
able for small datasets; usually, it is preferable to store data on files and have SAS
read the data file.

The next data step creates a modified data set, florid2, for use in the regression
modeling. Consequently, we remove Palm Beach County (i.e., the county variable
with the value ‘palmbch’). We also want to construct an interaction term for the
third model. The interaction between the votes for Nader and the votes for Bush is
modeled by the product nader*bush. We call this new variable nbinter.

Now we are ready to run the regressions. Although we could use three model
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statements in a single regression procedure, instead we performed the regression as
three separate procedures. The model statement specifies the dependent variable on
the left side of the equation. On the right side of the equation is the list of predictor
variables. For the first regression we have the variables nader, bush, and gore; for
the second just the variables nader and bush. The third regression specifies nader,
bush, and their interaction term nbinter.

The output (presented in bold face) appears as follows:

Model: MODEL1 (using votes for Nader, Bush, and Gore to predict votes for
Buchanan)
Dependent Variable: BUCHANAN
Analysis of Variance

Source DF Sum of Squares  Mean Square F Value Prob>F
Model 3 2777684.5165 925894.82882  114.601  0.0001
Error 62 500914.34717 8079.26366

C Total 65 3278598.8636

Root MSE 89.88472 R-square 0.8472
Dep Mean  211.04545 Adj R-sq 0.8398

C.V. 42.59022
Parameter Estimates
Variable DF Parameter Standard T for HO:
Estimate Error Parameter =0 Prob>|T]|
INTERCEP 1 54.757978 14.29169893 3.831 0.0003
NADER 1 0.077460 0.01255278 6.171 0.0001
BUSH 1 0.001795 0.00056335 3.186 0.0023
GORE 1 —0.000641 0.00040706 -1.574 0.1205

Model: MODEL?2 (using votes for Nader and Bush to predict votes for
Buchanan)
Dependent Variable: BUCHANAN
Analysis of Variance

Source DF Sum of Squares  Mean Square F Value Prob>F
Model 2 2757655.9253 1378827.9626  166.748  0.0001
Error 63 520942.93834 8268.93553

C Total 65 3278598.8636

Root MSE 90.93369 R-square 0.8411
Dep Mean  211.04545 Adj R-sq 0.8361

C.V. 43.08725
Parameter Estimates
Variable DF Parameter Standard T for HO:
Estimate Error Parameter =0 Prob>|T]|
INTERCEP 1 60.155214  14.03642389 4.286 0.0001
NADER 1 0.072387 0.01227393 5.898 0.0001

BUSH 1 0.001220 0.00043382 2.812 0.0066
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Model: MODELS3 (using votes for Nader and Bush plus an interaction term,
Nader*Bush)
Dependent Variable: BUCHANAN
Analysis of Variance

Source DF Sum of Squares  Mean Square F Value Prob>F
Model 3 2811645.8041 937215.26803  124.439  0.0001
Error 62 466953.05955 7531.50096

C Total 65 3278598.8636

Root MSE 86.78422 R-square 0.8576
Dep Mean  211.04545 Adj R-sq 0.8507

C.V. 41.12110
Parameter Estimates
Variable DF Parameter Standard T for HO:
Estimate Error Parameter =0 Prob>|T)|
INTERCEP 1 36.353406 16.7731503 2.261 0.0273
NADER 1 0.098017 0.01512781 6.479 0.0001
BUSH 1 0.001798 0.00046703 3.850 0.0003
NBINTER 1 —-0.000000232 0.00000009 -2.677 0.0095

For each model, the value of R? describes the percentage of the variance in the
votes for Buchanan that is explained by the predictor variables. By taking into ac-
count the joint influence of the significant predictor variables in the model, the ad-
justed R? provides a better measure of goodness of fit than do the individual predic-
tors. Both models (1) and (2) have very similar R? and adjusted R? values. Model (3)
has slightly higher R? and adjusted R? values than does either model (1) or model (2).

The F test for each model shows a p-value less than 0.0001 (the column labeled
Prob>F), indicating that at least one of the regression parameters is different from
zero. The individual ¢ test on the coefficients suggests the coefficients that are dif-
ferent from zero. However, we must be careful about the interpretation of these re-
sults, due to multiple testing of coefficients.

Regarding model (3), since Bush received 152,846 votes and Nader 5564, the
equation predicts that Buchanan should have 659.236 votes. Model (1) uses the
268,945 votes for Gore (in addition to those for Nader and Bush) to predict 587.710
votes for Buchanan. Model (2) predicts the vote total for Buchanan to be 649.389.
Model (3) is probably the best model, for it predicts that the votes for Buchanan will
be less than 660. So again we see that any reasonable model would predict that
Buchanan would receive 1000 or fewer votes, far less than the 3407 he actually re-
ceived!

12.11 LOGISTIC REGRESSION

Logistic regression is a method for predicting binary outcomes on the basis of one
or more predictor variables (covariates). The goal of logistic regression is the same
as the goal of ordinary multiple linear regression; we attempt to construct a model
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to best describe the relationship between a response variable and one or more inde-
pendent explanatory variables (also called predictor variables or covariates). Just as
in ordinary linear regression, the form of the model is linear with respect to the re-
gression parameters (coefficients). The only difference that distinguishes logistic
regression from ordinary linear regression is the fact that in logistic regression the
response variable is binary (also called dichotomous), whereas in ordinary linear re-
gression it is continuous.

A dichotomous response variable requires that we use a methodology that is very
different from the one employed in ordinary linear regression. Hosmer and
Lemeshow (2000) wrote a text devoted entirely to the methodology and many im-
portant applications of handling dichotomous response variables in logistic regres-
sion equations. The same authors cover the difficult but very important practical
problem of model building where a “best” subset of possible predictor variables is
to be selected based on data. For more information, consult Hosmer and Lemeshow
(2000).

In this section, we will present a simple example along with its solution. Given
that the response variable Y is binary, we will describe it as a random variable that
takes on either the value 0 or the value 1. In a simple logistic regression equation
with one predictor variable, X, we denote by 7(x) the probability that the response
variable Y equals 1 given that X = x. Since Y takes on only the values 0 and 1, this
probability m(x) also is equal to E(Y|X = x) since E(YJX =x)=0P(Y=0X=x) + 1
P(Y=1X=x)=P(Y=1X=x) = m(x).

Just as in simple linear regression, the regression function for logistic regression
is the expected value of the response variable, given that the predictor variable X =
x. As in ordinary linear regression we express this function by a linear relationship
of the coefficients applied to the predictor variables. The linear relationship is spec-
ified after making a transformation. If X is continuous, in general X can take on all
values in the range (-, +o). However, Y is a dichotomy and can be only 0 or 1.
The expectation for Y, given X = x, is that 7(x) can belong only to [0, 1]. A linear
combination such as « + Bx can be in (—o°, +) for continuous variables. So we con-
sider the logit transformation, namely g(x) = In[#(x)/(1 — 7(x)]. Here the transfor-
mation w(x) = [m(x)/(1 — (x)] can take a value from [0, 1] to [0, +%) and In (the
logarithm to the base e) takes w(x) to (-, +). So this logit transformation puts
g(x) in the same interval as « + Bx for arbitrary values of a and .

The logistic regression model is then expressed simply as g(x) = a + Bx where g
is the logit transform of 7. Another way to express this relationship is on a proba-
bility scale by reversing (taking the inverse) the transformations, which gives 7(x)
=exp(a + Bx)/[1 + exp(a + Bx)], where exp is the exponential function. This is be-
cause the exponential is the inverse of the function In. That means that exp(In(x)) =
x. So exp[g(x)] = exp(a + Bx) = exp{In[m(x)/(1 — m(x)]} = 7(x)/1 — 7(x). We then
solve exp(a + Bx) = m(x)/1 — m(x) for m(x) and get m(x) = exp(a + Bx)[1 — m(x)] =
exp(a + Bx) —exp(a + Bx)m(x). After moving exp(a + Bx) m(x) to the other side of
the equation, we have m(x) + exp(a + Bx)m(x) = exp(a + Bx) or m(x)[1 + exp(a +
Bx)] = exp(a + Bx). Dividing both sides of the equation by 1 + exp(« + Bx) at last
gives us 7(x) = exp(a + Bx)/[1 + exp(a + Bx)].
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The aim of logistic regression is to find estimates of the parameters « and [ that
best fit an available set of data. In ordinary linear regression, we based this estima-
tion on the assumption that the conditional distribution of Y given X = x was nor-
mal. Here we cannot make that assumption, as Y is binary and the error term for ¥
given X = x takes on one of only two values, —7r(x) when ¥ =0 and 1 — 7(x) when Y
= 1 with probabilities 1 — m(x) and m(x), respectively. The error term has mean zero
and variance [1 — 7(x)]m(x). Thus, the error term is just a Bernoulli random variable
shifted down by m(x).

The least squares solution was used in ordinary linear regression under the usual
assumption of constant variance. In the case of ordinary linear regression, we were
told that the maximum likelihood solution was the same as the least squares solu-
tion [Draper and Smith (1998), page 137, and discussed in Sections 12.8 and 12.10
above]. Because the distribution of error terms is much different for logistic regres-
sion than for ordinary linear regression, the least squares solution no longer applies;
we can follow the principle of maximizing the likelihood to obtain a sensible solu-
tion. Given a set of data (y;, x;) where i = 1, 2, . . ., n and the y;, are the observed re-
sponses and can have a value of either 0 or 1, and the x; are the corresponding co-
variate values, we define the likelihood function as follows:

L(xl’ V15 X25 V25 - o o5 Xy yn) = 77-(xl)y][l - W(xl)](liyl)
()21 = () "2 (s P3[1 = a(x)] 023, L Y[l = ()] (12.1)

This formula specifies that if y; = 0, then the probability that y; =0 is 1 — 7(x;);
whereas, if y; = 1, then the probability of y; = 1 is 7(x;). The expression 7(x;)i[1 —
a(x;)]127 provides a compact way of expressing the probabilities for y, =0 or y; = 1
for each i regardless of the value of y. These terms shown on the right side of the
equal sign of Equation 12.8 are multiplied in the likelihood equation because the
observed data are assumed to be independent. To find the maximum values of the
likelihood we solve for « and B by simply computing their partial derivatives and
setting them equal to zero. This computation leads to the likelihood equations 3[y, —
7(x;)] = 0 and 2x,[y; — m(x;)] = 0 which we solve simultaneously for « and B. Recall
that in the likelihood equations 7r(x;) = exp(a + Bx;)/[1 + exp(a + Bx;)], so the para-
meters « and B enter the likelihood equations through the terms with 7(x;).

Generalized linear models are linear models for a function g(x). The function g is
called the link function. Logistic regression is a special case where the logit func-
tion is the link function. See Hosmer and Lemeshow (2000) and McCullagh and
Nelder (1989) for more details.

Iterative numerical algorithms for generalized linear models are required to
solve maximum likelihood equations. Software packages for generalized linear
models provide solutions to the complex equations required for logistic regression
analysis. These programs allow you to do the same things we did with ordinary sim-
ple linear regression—namely, to test hypotheses about the coefficients (e.g.,
whether or not they are zero) or to construct confidence intervals for the coeffi-
cients. In many applications, we are interested only in the predicted values m(x) for
given values of x.
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Table 12.10 reproduces data from Campbell and Machin (1999) regarding he-
moglobin levels among menopausal and nonmenopausal women. We use these data
in order to illustrate logistic regression analysis.

Campbell and Machin used the data presented in Table 12.10 to construct a lo-
gistic regression model, which addressed the risk of anemia among women who
were younger than 30. Female patients who had hemoglobin levels below 12 g/dl
were categorized as anemic. The present authors (Chernick and Friis) dichotomized
the subjects into anemic and nonanemic in order to examine the relationship of age
(under and over 30 years of age) to anemia. (Refer to Table 12.11.)

We note from the data that two out of the five women under 30 years of age were
anemic, while only two out of 15 women over 30 were anemic. None of the women
who were experiencing menopause was anemic. Due to blood and hemoglobin loss
during menstruation, younger, nonmenopausal women (in comparison to
menopausal women) were hypothesized to be at higher risk for anemia.

In fitting a logistic regression model for anemia as a function of the di-
chotomized age variable, Campbell and Machin found that the estimate of the re-
gression parameter 3 was 1.4663 with a standard error of 1.1875. The Wald test,
analogous to the ¢ test for the significance of a regression coefficient in ordinary lin-
ear regression, is used in logistic regression. It also evaluates whether the logistic

TABLE 12.10. Hemoglobin Level (Hb), Packed Cell Volume (PCV), Age, and
Menopausal Status for 20 Women*

Menopause
Subject Number Hb (g/dl) PCV (%) Age (yrs) (0=No, 1 =Yes)
1 11.1 35 20 0
2 10.7 45 22 0
3 12.4 47 25 0
4 14.0 50 28 0
5 13.1 31 28 0
6 10.5 30 31 0
7 9.6 25 32 0
8 12.5 33 35 0
9 13.5 35 38 0
10 13.9 40 40 0
11 15.1 45 45 1
12 13.9 47 49 0
13 16.2 49 54 1
14 16.3 42 55 1
15 16.8 40 57 1
16 17.1 50 60 1
17 16.6 46 62 1
18 16.9 55 63 1
19 15.7 42 65 1
20 16.5 46 67 1

*Adapted from Campbell and Machin (1999), page 95, Table 7.1.



12.12 EXERCISES 287

TABLE 12.11. Women Reclassified by Age Group and Anemia (Using Data
from Table 12.10)

Age (0 =under 30,
Subject Number Anemic (0 =No, 1 = Yes) 1 =30 or over)
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regression coefficient is significantly different from 0. The value of the Wald statis-
tic was 1.5246 for these data (p = 0.2169, n.s.).

With such a small sample size (n = 20) and the dichotomization used, one cannot
find a statistically significant relationship between younger age and anemia. We can
also examine the exponential of the parameter estimate. This exponential is the esti-
mated odds ratio (OR), defined elsewhere in this book. The OR turns out to be 4.33,
but the confidence interval is very wide and contains 0.

Had we performed the logistic regression using the actual age instead of the di-
chotomous values, we would have obtained a coefficient of —0.2077 with a standard
error of 0.1223 for the regression parameter, indicating a decreasing risk of anemia
with increasing age. In this case, the Wald statistic is 2.8837 (p = 0.0895), indicat-
ing that the downward trend is statistically significant at the 10% level even for this
relatively small sample.

12.12 EXERCISES

12.1  Give in your own words definitions of the following terms that pertain to bi-
variate regression and correlation:
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12.2

12.3

124

12.5

CORRELATION, LINEAR REGRESSION, AND LOGISTIC REGRESSION

a. Correlation versus association
b. Correlation coefficient

c. Regression

d. Scatter diagram

e. Slope (b)

Research papers in medical journals often cite variables that are correlated

with one another.

a. Using a health-related example, indicate what investigators mean when
they say that variables are correlated.

b. Give examples of variables in the medical field that are likely to be cor-
related. Can you give examples of variables that are positively correlated
and variables that are negatively correlated?

c. What are some examples of medical variables that are not correlated?
Provide a rationale for the lack of correlation among these variables.

d. Give an example of two variables that are strongly related but have a
correlation of zero (as measured by a Pearson correlation coefficient).

List the criteria that need to be met in order to apply correctly the formula
for the Pearson correlation coefficient.

In a study of coronary heart disease risk factors, an occupational health
physician collected blood samples and other data on 1000 employees in an
industrial company. The correlations (all significant at the 0.05 level or
higher) between variable pairs are shown in Table 12.12. By checking the
appropriate box, indicate whether the correlation denoted by r; is lower
than, equal to, or higher than the correlation denoted by r,.

Some epidemiologic studies have reported a negative association between
moderate consumption of red wine and coronary heart disease mortality.
To what extent does this correlation represent a causal association? Can
you identify any alternative arguments regarding the interpretation that

TABLE 12.12. Correlations between Variable Pairs in a Risk Factor Study*

Variable Pair 7 Variable Pair s r<r, | r=r >,

LDL chol/HDL chol | 0.87 | HDL chol/SUA 0.49

HDL chol/glucose 0.01 | Trigl/glucose —0.09
Glucose/Hba,c 0.76 | Glucose/SUA —0.76
Trigl/glucose —0.09 | Glucose/SUA —0.76
HDL chol/SUA 0.49 | Glucose/SUA —0.76

* Abbreviations: chol = cholesterol; SUA = serum uric acid; Trigl = triglycerides; Hbalc = glycosolated
hemoglobin.
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12.6

12.7

12.8

consumption of red wine causes a reduction in coronary heart disease mor-
tality?

A psychiatric epidemiology study collected information on the anxiety and

depression levels of 11 subjects. The results of the investigation are present-

ed in Table 12.13. Perform the following calculations:

a. Scatter diagram

b. Pearson correlation coefficient

c. Test the significance of the correlation coefficient at & = 0.05 and a =
0.01.

Refer to Table 12.1 in Section 12.3. Calculate » between systolic and dias-
tolic blood pressure. Calculate the regression equation between systolic and
diastolic blood pressure. Is the relationship statistically significant at the
0.05 level?

Refer to Table 12.14:

a. Create a scatter diagram of the relationships between age (X) and choles-
terol (Y), age (X) and blood sugar (Y), and cholesterol (X) and blood sug-
ar (7).

b. Calculate the correlation coefficients (r) between age and cholesterol,
age and blood sugar, and cholesterol and blood sugar. Evaluate the sig-
nificance of the associations at the 0.05 level.

c. Determine the linear regression equations between age (X) and choles-
terol (Y), age (X) and blood sugar (Y), and cholesterol (X) and blood sug-
ar (Y). For age 93, what are the estimated cholesterol and blood pressure
values? What is the 95% confidence interval about these values? Are the
slopes obtained for the regression equations statistically significant (at
the 0.05 level)? Do these results agree with the significance of the corre-
lations?

TABLE 12.13. Anxiety and Depression Scores of 11 Subjects

Subject ID Anxiety Score Depression Score
1 24 14
2 9 5
3 25 16
4 26 17
5 35 22
6 17 8
7 49 37
8 39 41
9 8 6

10 34 28
11 28 33
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TABLE 12.14 : Age, Cholesterol Level, and Blood Sugar Level of

Elderly Men
Age Cholesterol Blood Sugar
76 80 275 360 125 139
76 80 245 238 127 137
76 80 245 267 138 131
76 63 237 295 129 160
93 63 263 245 151 147
91 63 251 305 138 139
91 64 195 276 137 148
97 76 260 275 129 175
72 76 245 259 138 151
72 76 268 245 139 147
72 76 254 226 150 126
72 57 282 247 159 129

12.9  An experiment was conducted to study the effect on sleeping time of in-
creasing the dosage of a certain barbiturate. Three readings were made at
each of three dose levels:

Sleeping Time (Hrs) Dosage (LM/kg)
Y X

3
3
3
10
10
10
15
15

9 15
3Y=72 SX=2384
3Y?2=642 3X%=1002
XY =780

— W 30 O W B

—_

. Plot the scatter diagram.

. Determine the regression line relating dosage (X) to sleeping time (Y).

. Place a 95% confidence interval on the slope parameter f3.

. Test at the 0.05 level the hypothesis of no linear relationship between the
two variables.

e. What is the predicted sleeping time for a dose of 12 uM/kg?

o O
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12.10 In the text, a correlation matrix was described. Using your own words, ex-
plain what is meant by a correlation matrix. What values appear along the
diagonal of a correlation? How do we account for these values?

12.11 An investigator studying the effects of stress on blood pressure subjected
mine monkeys to increasing levels of electric shock as they attempted to ob-
tain food from a feeder. At the end of a 2-minute stress period, blood pres-
sure was measured. (Initially, the blood pressure readings of the nine mon-
keys were essentially the same).

Blood Pressure Shock Intensity

Y X
125 30
130 30
120 30
150 50
145 50
160 50
175 70
180 70
180 70

Some helpful intermediate calculations: XX = 450, XY = 1365, 3X? =

24900, 3 Y% = 211475, (3X)* = 202500, (XY)? = 1863225, X Y = 71450,

and (2X)(2Y) = 614250. Using this information,

a. Plot the scatter diagram.

b. Determine the regression line relating blood pressure to intensity of
shock.

c. Place a 95% confidence interval on the slope parameter .

d. Test the null hypothesis of no linear relationship between blood pressure
and shock intensity (stress level). (Use a =0.01.)

e. For a shock intensity level of 60, what is the predicted blood pressure?

12.12 Provide the following information regarding outliers.
a. What is the definition of an outlier?
b. Are outliers indicators of errors in the data?
c. Can outliers sometimes be errors?
d. Give an example of outliers that represent erroneous data.
e. Give an example of outliers that are not errors.

12.13 What is logistic regression? How is it different from ordinary linear regres-
sion? How is it similar to ordinary linear regression?



292

12.14

12.15

12.16

12.17

12.18

12.19

12.20

CORRELATION, LINEAR REGRESSION, AND LOGISTIC REGRESSION

In a study on the elimination of a certain drug in man, the following data
were recorded:

Time in Hours  Drug Concentration (jug/ml)

X Y
0.5 0.42
0.5 0.45
1.0 0.35
1.0 0.33
2.0 0.25
2.0 0.22
3.0 0.20
3.0 0.20
4.0 0.15
4.0 0.17

Intermediate calculations show 2X = 21, 2Y = 2.74, 3X? = 60.5, 2Y? =

0.8526, and XY = 4.535.

a. Plot the scatter diagram.

b. Determine the regression line relating time (X) to concentration of drug
().

c. Determine a 99% confidence interval for the slope parameter S.

d. Test the null hypothesis of no relationship between the variables at o =
0.01.

e. Is (d) the same as testing that the slope is zero?

f. Is (d) the same as testing that the correlation is zero?

g. What is the predicted drug concentration after two hours?

What is the difference between a simple and a multiple regression equation?

Give an example of a multiple regression problem and identify the terms in
the equation.

How does the multiple correlation coefficient R? for the sample help us in-
terpret a multiple regression problem?

A regression problem with five predictor variables results in an R? value of
0.75. Interpret the finding.

When one of the five predictor variables in the preceding example is elimi-
nated from the analysis, the value of R? drops from 0.75 to 0.71. What does
this tell us about the variable that was dropped?

What is multicollinearity? Why does it occur in multiple regression problems?
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12.21 What is stepwise regression? Why is it used?

12.22 Discuss the regression toward the mean phenomenon. Give a simple real-

life example.

12.23 Give an example of a logistic regression problem. How is logistic regres-

sion different from multiple linear regression?

12.24 When a regression model is nonlinear or the error terms are not normally

distributed, the standard hypothesis testing methods and confidence inter-
vals do not apply. However, it is possible to solve the problem by bootstrap-
ping. How might you bootstrap the data in a regression model? [Hint: There
are two ways that have been tried. Consider the equation ¥ = a + B,X, +
B.X, + B3X; + B4X, + € and think about using the vector (Y, X, X5, X3, Xj).
Alternatively, to help you apply the bootstrap, what do you know about the
properties of ¢ and its relationship to the estimated residuals e = ¥ — (a +
b\ X, + byX, + b3 X5 + b, X,), where a, by, b,, b;, and b, are the least squares
estimates of the parameters «, ;, B, B3, and B, respectively.] Refer to
Table 12.1 in Section 12.3. Calculate » between systolic and diastolic blood
pressure. Calculate the regression equation between systolic and diastolic
blood pressure. Is the relationship statistically significant at the 0.05 level?
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CHAPTER 13

One-Way Analysis of Variance

Statistical methods of analysis are intended to aid the interpreta-

tion of data that are subject to appreciable haphazard variability.
—Sir David R. Cox and David V. Hinkley, Theoretical Statistics, p. 1

The analysis of variance is a comparison of different populations in studies that
have several treatments or conditions. For example, we may want to compare mean
scores from three or more populations that represent three or more study conditions.
Remember that we used the Z test or ¢ test to compare two populations, as in com-
paring an experimental group with a control group. The analysis of variance will
enable us to extend the comparison to more than two groups.

In this text, we will consider only the one-way analysis of variance (ANOVA).
Typically, ANOVA is used to compare population means (u’s) that represent inter-
val- or ratio-level measurement. In the one-way analysis of variance, there is a sin-
gle factor (such as classification according to treatment group) that differentiates
the groups.

Other types of analyses of variance are also important in statistics. ANOVA may
be extended to two-way, three-way, and N-way designs. To illustrate, the two-way
analysis would examine the effects of two variables, such as treatment group and
age group, on an outcome variable. The N-way ANOVAs are used in experimental
studies that have multiple factorial designs. However, the problem of assessing the
associations of several variables with an outcome variable becomes daunting.

One common use of the two-way analysis of variance is the randomized block
design. In this design, one factor could be the treatment and the other would be the
blocks. Blocks refer to homogeneous groupings of subsets of subjects; for example,
subsets defined by race or other demographic characteristics. These characteristics,
when uncontrolled, may increase the size of the error variance. In the randomized
block design, we look for treatment effects and block effects, both of which are
called the main effects. There is also the possibility of considering interaction ef-
fects between the treatments and the blocks. Interaction means that certain combi-
nations of treatments and blocks may have greater or smaller impact on the out-
come than do than the sum of their main effects. As is true of regression, the
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analysis of variance, which represents an important area in applied statistics, is the
subject of entire books.

Scheffe (1959) wrote the classic theoretical text on analysis of variance. Fisher
and McDonald (1978) authored a more recent text, which provides an advanced
treatment of fixed effects designs (as opposed to random effects). Other, less ad-
vanced, treatments can be found in Hocking (1985), Dunn and Clark (1974), and
Miller (1986).

In statistical computer packages, the analysis of variance can be treated as a re-
gression problem with dummy variables. A dummy variable is a type of dichoto-
mous variable created by recoding the classifications of a categorical variable. For
example, a single category of race (e.g., African American) would be coded as pre-
sent (1) or absent (0). In the case of a regression problem, we may regard an ANO-
VA as a type of linear model. Such a linear model (called the general linear model)
can employ a mix of categorical and continuous variables to describe a relationship
between them and a response variable. You may often see this type of analysis re-
ferred to as analysis of covariance. All these models have the decomposition of
variance of the response Y into proportions explained by the predictor variables.
This is the so-called ANOVA that we will describe in this chapter.

In Chapter 12 we discussed R?, which is a ratio of the part of the variance in the
response variable Y that is explained by the regression equation divided by the total
variance of the response variable Y. In the ANOVA table (refer to Appendix 4), we
will see the case of an F test in which at least one of the means of a response vari-
able is different from the other means. There is a direct mathematical relationship
between this F statistic and R?.

In Chapter 12, we emphasized simple linear regression and correlation and
briefly touched on multiple regression by giving one example. Analogously, multi-
way analysis of variance is similar to multiple linear regression, in that there are
two or more categorical variables in the model to explain the response Y. We will
not go into the details here; the interested reader can consult some of the texts listed
in Section 13.7.

13.1 THE PURPOSE OF ONE-WAY ANALYSIS OF VARIANCE

The purpose of the one-way analysis of variance (ANOVA) is to determine whether
three or more groups have the same mean (i.e., Hy: i, = sy = M3, - . ., ). [t is a
generalization of the 7 test to three or more groups. But the difference is that for a
one-sided ¢ test, when you reject the null hypothesis of equality of means, the alter-
native tells you which one of the two means is greater (i > g, i < g, O by > Mo,
m1 < uy). With the analysis of variance, the corresponding test is an F test. It tells
you that the means are different but not necessarily which one is larger than the oth-
ers. As a result, if we want to identify specific differences we need to carry out ad-
ditional tests, as described in Section 13.5.

The analysis of variance is based on a linear model that says that the response for
group j, denoted X, satisfies Equation 13.1 for a one-way ANOVA:
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)(ij:Mj-&-gij (13.1)

where i is the ith observation from the jth group j =1, 2, . . ., k; j is the group label
and we have k = 3 groups; y; is the mean for group j; and ¢;; is an independent error
term assumed to have a normal distribution with mean 0 and variance o2 indepen-
dent of ;.

The test statistic is the ratio of estimates of two sources of variation called the
within-group variance and the between-group variance. If the treatment makes a
difference, then we expect that the between-group variance will exceed the within-
group variance. These variances or sums of squares when normalized have indepen-
dent chi-square distributions with n,, and n, degrees of freedom, respectively, when
the modeling assumptions in Equation 13.1 hold and the null hypothesis is true. The
sums of squares divided by their degrees of freedom are called mean squares.

The ratio of these mean squares is the test statistic for the analysis of variance.
When the means are equal, this ratio has an F' distribution with n, degrees of free-
dom in the numerator and #,, degrees of freedom in the denominator. It is this F dis-
tribution that we refer to in order to determine whether or not to reject the null hy-
pothesis. We also can compute a p-value from this F distribution as we have done
with other tests. The F distribution is more complicated than the ¢ distribution be-
cause it has two degrees of freedom parameters instead of just one.

13.2 DECOMPOSING THE VARIANCE AND ITS MEANING

Cochran’s theorem is the basis for the sums of squares having independent chi-
square distributions when Equation 13.1 holds [see Rao (1997), page 4]. It can be
deduced from Cochran’s theorem in the case of the one-way ANOVA that 2(X}; —
X)? =3(X, - X))* + 2(X; — X)*, where the following holds:

Xj; is normally distributed with mean y;

The variance is o?

Xj; is the jth observation from the ith group

X.. is the average of all observations in the ith group
X is the average over all the observations in all groups

Let O, O,, and O, refer to total sum of squares, within-groups sum of squares,
and between-groups sum of squares, respectively. We have that 0 =0, + 0, O =
2(X; - X)? normalized has a chi-square distribution with n, + n, — 1 degrees of
freedom; Q; = 2(X,; — X;.)* has a chi-square distribution with n,, degrees of free-
dom; and Q, = 3(X; — X)? has a chi-square distribution with n, — 1 degrees of
freedom. Q, is independent of (X} — X;)?. The symbol n, is the number of
groups and #,, is the number of degrees of freedom for error. The total sample size
equals n — n,. For O, to have a chi-square distribution when appropriately nor-
malized, we need the null hypothesis that all u; are equal to be true. The F distri-
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bution is obtained by taking [Q,/(n;, — 1)]/[Q,/n,,]. When the alternative holds, the
normalized O, has what is called a noncentral chi-square distribution, and the ra-
tio tends to be centered above 1. The distribution of [Q,/(n, — 1)]/[Q,/n,,] is then
called a noncentral F distribution.

The mathematical relationship between this F statistic and the sample multiple
correlation coefficient R? (discussed in Chapter 12) is as follows: R? = (n, — 1)F/
{(ny— DF + n,} or F = {R*/(n, — D}/{(1 - R*)/n,,}

13.3 NECESSARY ASSUMPTIONS
The assumptions for the one-way analysis of variances are:

1. X;; = u; + &, where i is the ith observation from the jth group,j=1,2, ..., k;
k is the group label for k = 3 group; w; is the mean for group j; and g is an
independent error term.

2. The &, has a normal distribution with mean 0 and variance o* independent of
J-

3. Under the null hypothesis, u; = u for all ;.

To express this in nonmathematical terms, all observations in the jth group are inde-
pendent and normally distributed with the same mean and variance. However, two
different groups can have different means but must have the same variance. Under
the null hypothesis, all groups must also have the same mean.

The sensitivity of the analysis to violations of these assumptions has been well
studied; see Miller (1986) for a discussion. When these assumptions are violated,
we can use a nonparametric alternative called the Kruskal-Wallis test (refer to Sec-
tion 14.6.)

13.4 F DISTRIBUTION AND APPLICATIONS

The F distribution will be used to evaluate the significance of the association
between an independent variable and an outcome variable in an ANOVA. The F
distribution is defined as the distribution of (Z/n,)/(W/n,), where Z has a chi-square
distribution with n; degrees of freedom, W has a chi-square distribution with »n,
degrees of freedom, and Z and W are statistically independent. In the one-way
analysis of variance, Z = Q,/0%, W = Q,/0?, n| = n,,, and n, = n, — 1; so the ratio
[O5/(n, — DV/[Q,/n,,] has the central F distribution with n, — 1 numerator degrees of
freedom and »,, denominator degrees of freedom under the null hypothesis. Note
that the common variance o appears in both the numerator and denominator and
hence cancels out of the ratio.

The probability density function for this F distribution has been derived and is
described in statistical texts [see page 246 in Mood, Graybill, and Boes (1974)].
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TABLE 13.1. General One-Way ANOVA Table

Source of Sum of Degrees of

Variation Squares Freedom (df) Mean Square F ratio
Between SS, n,—1 MS,=SS,/(n,—1)  F=MS,/ MS,,
Within SS,, n, MS,, = SS,/n,, —
Total SS, n,+n,—1=n-1 — —

The F distribution depends on the two degrees of freedom parameters 7, and n,,
called, respectively, the numerator and denominator degrees of freedom. We in-
clude tables of the central F distribution based on degree of freedom parameters in
Appendix A. A sample ANOVA is presented in Table 13.1.

Although we do not cover the two-way analysis of variance, Table 13.2 shows
the typical two-way ANOVA table that should help you see how the ANOVA table
generalizes to N-way ANOVAs. Note that as more factors appear, we have more
than one F test. This appearance of multiple F tests is analogous to the several F
and/or ¢ tests in regression that are used to determine the significance of the regres-
sion coefficients. ANOVA Table 13.2 is not the most general table. A treatment by
block effect also can be considered in the model; in this case, the table would have
another row for the interaction term.

We will illustrate the one-way analysis of variance with a numerical example.
Table 13.3 shows some hypothetical data for the weight gain of pigs fed with three
different brands of cereal. A total of 12 pigs are randomly assigned (4 each) to the
three cereal brands.

To generate the ANOVA table, we must calculate SS;, and SS,,. As a first step in
obtaining SS,,, we calculate the means for each brand. X, =(1+2+2+1)/4=1.5. X,
=(7+8+9+8)/4=8 X.=(12+ 14+ 16 + 18)/4 = 15. The grand mean is X =
(1.5 +8 +15)/3=8.167. Now SSy, = 0, = (1 = 1L.5> + 2 - 1.5)> + (2 - 1.5)* +
(1 -152+(7—-82+(8-82+(9—-8)2+(8-8)%+ (12152 + (14 — 15> +
(16 —15)2+ (18— 15)>=0.25+025+025+025+1+0+1+0+9+1+1+9=
23. Note that SS,, represents the sum of squared deviations of the individual observa-
tions from their group means.

Now let us compute SS,. We can calculate this directly or calculate SS, and get
SS,, by the equation SS;, = SS, — SS§,,. Since S, is a little easier to compute, let us do

TABLE 13.2. Typical Two-Way ANOVA Table

Source of Sum of Degrees of

Variation Squares Freedom (df) Mean Square F Ratio
Treatment SS,, n,—1 MS,.=SS,/(n,—1) F=MS,/ MS,
Blocks SSy ny—1 MSy; =SS/ (ny; — 1) F = MS,/MS,
Residual SS, (n,— D(ny—1)  MS,=SS/[(n, — 1)(ny,—1)] —

Total SS, Ny — 1 — —
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TABLE 13.3. Weight Gain for 12 Pigs Fed with Three Brands of Cereal

Brand A (Gain in 0z) Brand B (Gain in 0z) Brand C (Gain in 0z)
1 7 12
2 8 14
2 9 16
1 8 18

it by the subtraction method first. We need to get the overall or “grand” mean—the
weighted average of the group means weighted by their respective sample sizes. In
this case, since all three groups have 4 pigs each, the result is the same as taking the
arithmetic average of the three group averages. So )_(g =(1.5+ 8+ 15)/3 =8.1667.
For SS,, we do the same computations as for SS,, except that instead of subtracting
the group means, we subtract the grand mean before taking the square. So for SS,
we have SS,= Q= (1-8.1667)* + (2 — 8.1667)% + (2 — 8.1667)> + (1 — 8.1667)> + (7
—8.1667)*> + (8 — 8.1667)> + (9 — 8.1667)> + (8 — 8.1667)% + (12 — 8.1667)*> + (14 —
8.1667)> + (16 — 8.1667)> + (18 — 8.1667)> = 51.3616 + 38.0282 + 38.0282 +
51.3616 + 2.7789 + 0.0278 + 0.6944 + 0.0278 + 14.6942 + 34.0274 + 61.3606 +
96.6938 = 391.0845.

So by subtraction, SS; = 391.0845-23.0 = 368.0845. Now we can fill in the
ANOVA table. Table 13.4 is the ANOVA table of the form of Table 13.1 as applied
to these data.

An F statistic of 72.00 is highly significant. Compare it to values in the F' distri-
bution table with 2 degrees of freedom in the numerator and 9 degrees of freedom
in the denominator (Appendix A). The critical values are 4.26 at the 5% level and
8.02 at the 1% level. So we see that the p-value is considerably less than 0.01.

SS, can be calculated directly. The formula is n,,{(X, — X)? + (X — X)* + (X —
X2} = 4{(1.5 — 8.167)*> + (8 — 8.167)> + (15 — 8.167)?} = 4{44.444 + 0.0279 +
46.690} = 364.647. This formula applies to balanced designs where 7, is the com-
mon number of observations in each group. The difference between the results ob-
tained from the two methods for calculating SS, (364.667 versus 364.647) is due to
rounding errors. Using SAS software and applying the GLM procedure to these
data, we found that SS), = 364.667. So most of the rounding error was in our calcu-
lation of SS, in the first approach.

TABLE 13.4. One-Way ANOVA Table for Pig Feeding Experiment

Degrees of
Source of Sumof  Freedom
Variation  Squares dfh Mean Square F Ratio
Between  368.0845 2 MS, =368.0845/2 = 184.0423 F =184.0423/2.556 = 72.00
Within 23 9 MS,,=23/9=2.556 —

Total 385.0845 11 — —
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13.5 MULTIPLE COMPARISONS

13.5.1 General Discussion

The result of rejecting the null hypothesis in the analysis of variance is to conclude
that there is a difference among the means. However, if we have three or more pop-
ulations, then how exactly do these means differ? Sometimes researchers consider
the precise nature of the differences among these means to be an important scientif-
ic issue. Alternatives to the analysis of variance, called ranking and selection proce-
dures, address this issue directly. As the alternative methods are beyond the scope
of the present text, we refer the interested reader to Gibbons, Olkin, and Sobel
(1977) for an explanation of the ranking and selection methodology.

In the framework of the analysis of variance, the traditional approach is to do the
F test first. If the null hypothesis is rejected, we can then look at several hypotheses
that compare the pair-wise differences of the means or other linear combinations of
the means that might be of interest. For example, we may be interested in w; — w,
and u; — py. A less obvious contrast might be w; — 2, + ;. Any such linear com-
bination of means can be considered, although in most practical situations mean dif-
ferences are considered and are tested against the null hypothesis prove that they
are zero. Since many hypotheses are being tested simultaneously, the methodology
must take this fact into account. Such methodology is sometimes called simultane-
ous inference (for example, see Miller, 1981) or multiple comparisons [see
Hochberg and Tamhane (1987) or Hsu (1996)]. Resampling approaches, including
bootstrapping, have also been successfully employed to accomplish this task [see
Westfall and Young (1993)].

13.5.2 Tukey’s Honest Significant Difference (HSD) Test

In order to find out which means are significantly different from one another, we
are at first tempted to look at the various ¢ tests that compare the differences of the
individual means. For k groups there are k(k — 1)/2 such comparisons. Even for k£ =
4, there are six comparisons.

The original ¢ tests might have been constructed to test the hypotheses at the 5%
significance level. The threshold C for such a test is determined by the # distribution
so that if T is the test statistic, then P(|7] > C) = 0.05 The constant C is found from
the table of the ¢ distribution and depends on the degrees of freedom. But this condi-
tion is set for just one such test.

If we do six such tests and set the thresholds to satisfy P(|7] > C) = 0.05 for each
test statistic, the probability that at least one of the test statistics will exceed the
threshold is much higher than 0.05. The methods of Scheffe, Tukey, and Dunnett,
among others, are designed to guard against this. See Miller (1981) for coverage of
all these methods. For these methods, we choose a threshold or thresholds so that
the probability that any one of the thresholds is exceeded is no greater than 0.05.
See Hsu (1996), Chapter 5, pp. 119-174, to see all such procedures.

In our example, when the test statistic exceeds the threshold, the result amounts
to declaring a significant difference between a particular pair of group means. The
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family-wise error rate is (by definition) the probability that any such declaration
would be incorrect. In doing multiple comparisons, we usually want to control this
family-wise error rate at a level of 0.05 (or 0.10).

When we use Tukey’s honest significant difference test, our test statistic has ex-
actly the same form as that of a ¢ test. Our confidence interval for the mean differ-
ence has the same form as a confidence interval using the ¢ distribution. The only
difference in the confidence interval between the HSD test and the ¢ test is that the
choice of the constant C is larger than what we would choose for a single # test.

In the application, we assume that the k& groups each have equivalent sample
sizes, n. This is called a balanced design. To calculate the confidence interval we
need a table of constants derived by Tukey (reprinted in Appendix B). We simply
compare the difference between the two sample means to the Tukey HSD for one-
way ANOVA, which is determined by Equation 13.2:

HSD = g(a, k, N — k)N'MSwin (13.2)

where &k = the number of groups, n = the number of samples per group, N is the total
number of samples, MSw is the within group mean square, and « is the significance
level or family-wise error rate. The constant g(«, k, N— k) is found in Tukey’s tables.

Note the use of the term ¢ in the equation. The quantity ¢ is sometimes called the
studentized range. A table for the studentized range for values of @ =0.01, 0.05, and
0.10 is given in Appendix B.

13.6 EXERCISES

13.1 Complete the following ANOVA table:

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F Ratio
Between 300
Within 550 15
Total 21
13.2 Complete the following ANOVA table:
Source of Sum of Degrees of
Variation Squares Freedom Mean Square F Ratio
Between 200 10
Within
Total 500 15
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13.3 Why does one use a Tukey’s HSD rather than a 7 test when comparing mean
differences in ANOVA?

13.4 Samples were taken of individuals with each blood type to see if the average
white blood cell count differed among types. Ten individuals in each group
were sampled. The results are given in the table below:

Average White Blood Cell Count by Blood Type

A B AB (6] Grand Totals
5,000 7,000 7,200 5,550
5,550 7,500 7,770 6,570
6,000 8,500 8,600 7,620
6,500 5,000 6,000 5,900
8,000 6,100 5,950 7,100
7,700 7,200 7,540 6,980
10,000 9,900 11,000 8,750
6,100 6,400 6,200 7,700
7,200 7,300 7,000 8,100
5,500 5,800 6,100 4,900
9,000 8,950 7,800 5,800
Sx 76,550 79,650 81,160 74,970 312,330 (grand total)
X 7655.0 7965.0 8116.0 7497.0  7808.25 (grand mean)

Source: Modification to Exercise 10.9, page 171, Kuzma and Bohnenblust (2001).

a. State the null hypothesis.
b. Construct an ANOVA table.

13.5 Using the data from the example in Exercise 13.4 and the ANOVA table
from that exercise, determine the p-value for the test (use the F statistic and
the appropriate degrees of freedom based on the within and between sum of
squares). Is there a statistically significant difference in the white blood cell
counts among the groups?

13.6 Five individuals were selected at random from three communities, and their
ages were recorded in the table below. The investigator was interested in de-
termining whether these communities differed in mean age.

Ages of Individuals (z = 5 in Each Group) in Three Communities

Community A Community B Community C Grand Totals
12 26 35
27 40 53
18 18 43
30 25 33
16 39 44
>x 103 148 208 459 (grand total)
X 20.6 29.6 41.6 30.6 (grand mean)

Source: Modification to Exercise 10.10, page 172, Kuzma and Bohnenblust (2001).
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a. State the null hypothesis.
b. Construct an ANOVA table.

Using the data from the example in Exercise 13.6 and the ANOVA table
from that exercise, determine the p-value for the test (use the F statistic and
the appropriate degrees of freedom based on the within and between sum of
squares). Is there a statistically significant difference in the ages among the
groups?

Researchers studied the association between birth mothers’ smoking habits
and the birth weights of their babies. Group 1 consisted of nonsmokers.
Group 2 comprised smokers who smoked less than one pack of cigarettes
per day. Group 3 smoked more than one but fewer than two packs per day.
Group 4 smoked more than two packs per day.

Birth Weights of Infants (» = 11 in Each Group)
by Mother’s Smoking Status

Group 1 Group 2 Group 3 Group 4

Subject (birthweight Subject (birthweight Subject (birthweight Subject (birthweight
Number ingrams) Number ingrams) Number ingrams) Number in grams)

— O 0 00NN AW~

—_ =

3510 12 3444 23 2608 34 2232
3174 13 3111 24 2555 35 2331
3580 14 2890 25 3100 36 2200
3232 15 3002 26 1775 37 2121
3884 16 2995 27 2985 38 2001
3982 17 3101 28 2479 39 1566
4055 18 3400 29 2901 40 1676
3459 19 3764 30 2778 41 1783
3998 20 2997 31 2099 42 2002
3852 21 3031 32 2500 43 2118
3421 22 3120 33 2322 44 1882

Source: Modification of data in Exercise 10.14, page 173, Kuzma and Bohnenblust (2001).

13.9

Use the above table to construct an ANOVA table for the test of no mean
differences in birth weight among the groups. What is the p-value for
this test? What do you conclude about the effect of smoking on birth
weight?

Four brands of cereal are compared to see if they produce significant weight
gain in rats. Four groups of seven rats each were given a diet of the respective
cereal brand. At the end of the experimental period, the rats were weighed and
the weight was compared to the weight just prior to the start of the cereal diet.
Determine whether each brand has a statistically significant effect on the
amount of weight gain. The data are provided in the table below.
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Rat Weight by Brand of Cereal

Brand A Brand B Brand C Brand D
(weight gain in 0z) (weight gain in 0z) (weight gain in 0z) (weight gain in 0z)
9 5 2 3
7 4 1 8
8 6 1 5
8 4 2 9
7 5 2 2
8 7 3 7
8 3 2 8

Source: Modification of Exercise 10.13, page 173, Kuzma and Bohnenblust (2001).

A botanist wants to determine the effect of microscopic worms on seedling
growth. He prepares 16 identical planting pots and then introduces four
sets of worm populations into them. There are four groups of pots with
four pots in each group. The worm population group sizes are 0 (intro-
duced into the first group of four pots), 500 (introduced into the second
group of four pots), 1000 (introduced into the third group of four pots), and
4000 (introduced into the fourth group of four pots). Two weeks after
planting, he measures the seedling growth in centimeters. The results are
given in the table below.

Seedling Growth in Centimeters by Worm Population Group

Group 1 Group 2 Group 3 Group 4
(0 worms) (500 worms) (1000 worms) (4000 worms)
10.7 11.1 5.7 4.7
9.0 11.1 5.1 32
13.4 8.9 7.2 6.5
9.2 11.4 4.8 5.3

Source: Adapted from Exercise 9.16, pages 584585, Moore (1995).

a. State the null hypothesis and determine the ANOVA table.

b. What is the result of the ' test?

c. Apply Tukey’s HSD test to see which means differ if the ANOVA was
significant at the 5% level.

Analysis of variance may be used in an industrial setting. For example, man-
agers of a soda-bottling company suspected that four filling machines were
not filling the soda cans in a uniform way. An experiment on four machines
doing five runs each gave the data in the following table.
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Liquid Weight of Machine-Filled Cans in Ounces

Machine A Machine B Machine C Machine D
12.05 11.98 12.04 12.00
12.07 12.05 12.03 11.97
12.04 12.06 12.03 11.98
12.04 12.02 12.00 11.99
11.99 11.99 11.96 11.96

Based on the analysis of variance, is there a difference in the average num-
ber of ounces filled by the four machines? Apply Tukey’s HSD test to
compare the mean differences if the overall ANOVA test is significant at
the 5% level.

13.12 The following table shows the home run production of five of baseball’s
greatest sluggers over a period of 10 years. Each has hit at least 56 home
runs in a season and all but Griffey have had seasons with 60 or more. Sosa,
Bonds, and Griffey are still active, McGwire has retired, and Ruth is de-
ceased, so this time period constitutes the final 10 years of McGwire’s and
Ruth’s respective careers.

Home Run Production for Five Great Sluggers

Ruth McGwire Sosa Bonds Griffey
25 42 15 34 27
47 9 10 46 45
60 9 8 37 40
54 39 33 33 17
46 52 25 42 49
49 58 36 40 56
46 70 66 37 56
41 65 63 34 48
34 32 50 49 40
22 29 64 73 22
Total 424 405 370 425 400
Average 42.4 40.5 37.0 42.5 40.0

a. Construct an ANOVA table to test whether or not there are statistically
significant differences in the home run production of these sluggers over
the ten-year period.

b. If the F test indicates significant differences at the 0.05 significance level,
apply Tukey’s HSD to see if there is a slugger who stands out with the
lowest average. Is there a slugger with an average significantly higher
than the rest? Is Bonds at 42.5 significantly higher than Sosa at 37.0?



13.7 ADDITIONAL READING 307

13.7 ADDITIONAL READING

10.

11.
. Rao, P. S. R. S. (1997). Variance Components Estimation: Mixed Models, Methodolo-

13.
14.

. Dunn, O. J. and Clark, V. A. (1974). Applied Statistics: Analysis of Variance and Re-

gression. Wiley, New York.

. Fisher, L. and McDonald, J. (1978). Fixed Effects Analysis of Variance. Academic Press,

New York.

. Gibbons, J. D., Olkin, L., and Sobel, M. (1977). Selecting and Ordering Populations: A

New Statistical Methodology. Wiley, New York.

. Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. Wiley,

New York.

. Hocking, R. R. (1985). The Analysis of Linear Models. Brooks/Cole, Monterey, Califor-

nia.

. Hsu, J. C. (1996). Multiple Comparisons: Theory and Methods. Chapman and Hall, Lon-

don.

. Kuzma, J. W. and Bohnenblust, S. E. (2001). Basic Statistics for the Health Sciences,

Fourth Edition. Mayfield, Mountain View, California.

. Miller, Jr., R. G. (1981). Simultaneous Statistical Inference, Second Edition. Springer-

Verlag, New York.

. Miller, Jr., R. G. (1986). Beyond ANOVA: Basics of Applied Statistics. Wiley, New

York.

Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the Theory of Sta-
tistics, Third Edition. McGraw-Hill, New York.

Moore, D. S. (1995). The Basic Practice of Statistics. W. H. Freeman, New York.

gies and Applications. Chapman and Hall, London.
Scheffe, H. (1959). The Analysis of Variance. Wiley, New York.

Westfall, P. H. and Young, S. S. (1993). Resampling-Based Mutiple Testing: Examples
and Methods for p-Value Adjustment. Wiley, New York.



CHAPTER 14

Nonparametric Methods

A precise and universally acceptable definition of the term “non-

parametric” is not presently available.
—John E. Walsh, Handbook of Nonparametric Statistics, Volume 1, Chapter 1, p. 2

14.1 ADVANTAGES AND DISADVANTAGES OF NONPARAMETRIC
VERSUS PARAMETRIC METHODS

With the exception of the bootstrap, the techniques covered in the first 13 chapters
are all parametric techniques. By parametric we mean that they are based on proba-
bility models for the data that involve only a few unknown values, called parame-
ters, which refer to measurable characteristics of populations. Usually, the paramet-
ric model that we have used has been the normal distribution; the unknown
parameters that we attempt to estimate are the population mean u and the popula-
tion variance o

However, many tests (e.g., the F test to determine equal variances), and estimat-
ing methods (e.g., the least squares solution to linear regression problems) are sen-
sitive to parametric modeling assumptions. These procedures can be shown in theo-
ry to be optimal when the parametric model is correct, but inaccurate or misleading
when the model does not hold, even approximately.

Procedures that are not sensitive to the parametric distribution assumptions are
called robust. Student’s ¢ test for differences between two means when the popula-
tions are assumed to have the same variance is robust, because the sample means in
the numerator of the test statistic are approximately normal by the central limit the-
orem.

With nonparametric techniques, the distribution of the test statistic under the null
hypothesis has a sampling distribution for the observed data that does not depend
on any unknown parameters. Consequently, these tests do not require an assump-
tion of a parametric family. As an example, the sign test for the paired difference
between two population medians has a test statistic, 7, which equals the number of
positive differences between pairs. 7 has a binomial distribution with parameters n
= sample size and p = 1/2 under the null hypothesis that the medians are equal. Note

308 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
and Robert H. Friis. ISBN 0-471-41137-X. Copyright © 2003 Wiley-Interscience.
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that this sampling distribution for the test statistic is completely known under the
null hypothesis since the sample size is given and p = 1/2. There are no unknown
parameters that need to be estimated from the data. The sign test is explained in
Section 14.5.

The lack of dependence on parametric assumptions is the advantage of nonpara-
metric tests over parametric ones. Nonparametric tests preserve the significance
level of the test regardless of the distribution of the data in the parent population.

When a parametric family is appropriate, the price one pays for a distribution-
free test is a loss in power in comparison to the parametric test. Also, in generating
the test statistic for a nonparametric procedure, we may throw out useful informa-
tion. For example, the most common popular tests covered in this chapter are rank
tests, which keep only the ranks of the observations and not their numerical values.

In the next section, we will show you how to rank the data in rank tests. Exam-
ples of these tests are the Wilcoxon rank-sum test, the Wilcoxon signed-rank test,
and the Kruskal-Wallis test. Conover (1999) has written an excellent text on the ap-
plications of nonparametric methods.

14.2 PROCEDURES FOR RANKING DATA

Ranking data becomes useful when we are dealing with inferences about two or
more populations and believe that parametric assumptions such as the normality of
their distributions do not apply. Suppose, for example, that we have two samples
from two distinct populations. Our null hypothesis is that the two populations are
identical. You may think of this as stating that they have the same medians. We are
not checking for differences in means because the mean may not even exist for
these populations. Table 14.1 shows how to rank data from two populations.

Let us denote the sample from the first population with #n, observations x,, x,, X3,

., X, The second sample consists of n, observations. For the purpose of the
analysis, we will pool the data from the two samples. We will label the observations
from the second sample Xy, Xu ,p) Xni35 - - - » Xnj+n,- NOW, to rank the data, we or-
der the observations from smallest to largest and denote the ordered observations as
y’s. If x5 is the smallest observation, x5 becomes y;, and if x5 is the next smallest, x;
becomes y,, and so forth. We continue in this way until all the x’s are assigned to all
the y’s.

TABLE 14.1. Terminology for Ranking Data from Two Independent

Samples

First Sample (x;) Second Sample (x;,,)

X1, X, X35+ 15 Xy R N . Y
Ordered Observations (y;)

Y15 V25 V35« - aynlayn1+1> cee syn1+n2
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In Table 14.2, we present hypothetical data to illustrate ranking. The y’s refer to
the ranked observations from the first and second samples. We have two groups,
control and treatment, x, and x,, respectively.

To illustrate the procedures described in the previous paragraph, suppose a re-
searcher conducted a study to determine whether physical therapy increased the
weight lifting ability of elderly male patients. As the researcher believed that the
data were not normally distributed, a nonparametric test was applied. The data un-
der the unsorted scores column represent the values as they were collected directly
from the subjects. Then the two data sets were combined and sorted in ascending
order. Each score was then assigned a rank, which is shown in parentheses. (Refer
to the columns labeled “sorted scores.”) The term 2R means that we should sum the
ranks in a particular column; the symbols 7 and 7" refer to the sum of the ranks in
the control and treatment groups, respectively. In this example, 7= 25 and 7" = 30.
We do not need to keep track of both of these statistics because the sum of all the
ranks is 7+ 7" and is known to be n(n + 1)/2, where # is the sum of the sample sizes
in the two groups, in this case n = 2(5) = 10, and so the sum of the ranks is 10(11)/2
= 55. In summing all the ranks we are just adding up the integers from 1 to 10 in our
example.

A possible ambiguity can occur when some data points share the same value. In
that case, the ordering among the tied values can be done by any system (e.g.,
choose the lowest indexed x first). Rather than assigning them separate ranks in ar-
bitrary order, sometimes we prefer to give all the tied observations the same rank.
That rank would be the average rank among the tied observations. If, for example,
the 3rd, 4th, 5th, and 6th smallest values were all tied, they would all get the rank of
4.5 [i.e., 3 +4+5+ 6)/4]. Now that the x’s have been rearranged from the smallest
to the largest values (the arrangement is sometimes called the rank order), the rank

TABLE 14.2. Left Leg Lifting Test Data among Elderly Male Patients Who Are
Receiving Physical Therapy; Maximum Weight (Unsorted, Sorted, and Ranked) For
Treatment and Control Groups

Unsorted scores Sorted scores (ranks shown in parentheses)

Control Group (x,)  Treatment Group (x,) Control Group (y,)  Treatment Group (y,)

25 26 16 (1)
66 85 18 (2)
34 48 25 (3)

18 68 26 (4)
57 16 34 (5)

48 (6)
n=>=5 n,=5 57(7)
66 (8)

68 (9)

85 (10)

T=3R=125 T'=3R=30
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transformation is made by replacing the value of the observation with its y sub-
script. This subscript is called the rank of the observation. Refer to Table 14.1 for an
example. You can see that the lowest rank is y,. If x5 is the smallest observation, its
rank would be 1. If x5 and x4 are tied, they both would be assigned to y, and y; and
have a rank of 2.5.

If the two distributions of the parent populations are the same, then the ranks will
be well mixed among the populations (i.e., both groups should have a similar num-
ber of high and low ranks in their respective samples). However, if the alternative is
true (that the population distributions are different) and the median or center of one
distribution is very different from the other, the group with the smaller median
should tend to have more lower ranks than the group with the higher median. A test
statistic based on the ranks of one group should be able to detect this difference. In
Section 14.3, we will consider an example: the Wilcoxon rank-sum test.

14.3 WILCOXON RANK-SUM TEST (THE MANN-WHITNEY TEST)

A nonparametric analog to the unpaired ¢ test, the Wilcoxon rank-sum test is used to
compare central tendency, i.e., the locations of two independent samples selected
from two populations. Conover (1999) is an important reference for this test. The
data must be taken from a continuous scale and represent at least ordinal measure-
ment. The Wilcoxon test statistic is calculated by taking the sum of the ranks of #,
observations from group one. There are also n, observations in group two, but only
group one is needed to perform the test. The sum of all the ranks (7 + 7") is (n; +
n,)(ny + n, + 1)/2. Referring to Table 14.2: (5 + 5)(5 + 5 + 1)/2 =55. You can veri-
fy this sum by checking Table 14.2. Since n,/(n, + n,) is the probability that a ran-
domly selected observation is from group one, multiplying these two numbers to-
gether gives the expected rank sum for group one. This value is (n,)(n, + n, + 1)/2 =
(5)(11)/2 = 27.5. We will use the rank sum for group one as the test statistic. The
distribution of the rank sum can be found in tables for small to moderate values of
n; and n,. For n; =5 and n, =5, the critical value is 18. A rank sum that is less than
18 or greater than 55 — 18 =37 is significant (p < 0.05, two-tailed test). Thus, in our
example, since 7 = 25 the difference between the treatment and control groups is
not statistically significant.

Here is a second example that uses small sample sizes. Recall in Section 8.7 the
table for pig blood loss data to compare the treatment and the control groups. In
Section 9.9, we used these data to demonstrate the two-sample ¢ test when both of
the variances for the parent population are assumed to be unknown and equal. Note
that if the variances are equal, we are only entertaining the possibility of a differ-
ence in the center or median of the distribution. Because these data did not fit well
to the normal distribution, we might perform a Wilcoxon rank-sum test to deter-
mine whether we can detect differences between the medians of the two popula-
tions. Table 14.3 shows the data and the pooled ranks.

The ranks in Table 14.3 are obtained as follows. First we list all the data irre-
spective of control group or treatment group assignment: 786, 375, 4446, 2886,
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TABLE 14.3. Pig Blood Loss Data (ml)

Control Group Pigs (pooled rank) Treatment Group Pigs (pooled rank)

786 (9) 543 (5)
375 (1) 666 (7)

4446 (19) 455 (3)

2886 (16) 823 (11)
478 (4) 1716 (14)
587 (6) 797 (10)
434 (2) 2828 (15)

4764 (20) 1251 (13)

3281 (17) 702 (8)

3837 (18) 1078 (12)

Sample mean (X,) =2187.40 Sample mean (X,) = 1085.90
Sample s.d. (s.) = 1824.27 Sample s.d. (s,) =717.12

478, 587, 434, 4764, 3281, 3837, 543, 666, 455, 823, 1716, 797, 2828, 1251, 702,
1078. Next we rearrange these values from smallest to largest: 375, 434, 455, 478,
543, 587, 666, 702, 786, 797, 823, 1078, 1251, 1716, 2828, 2886, 3281, 3837,
4446, 4764.

The ranks are then given as follows: 375 — 1,434 — 2,455 — 3,478 — 4, 543
— 5,587 — 6,666 — 7,702 — 8,786 — 9, 797 — 10, 823 — 11, 1078 — 12,
1251 — 13, 1716 — 14,2828 — 15, 2886 — 16, 3281 — 17, 3837 — 18, 4446 —
19, 4764 — 20. These ranks are then associated with observations in each group;
the ranks are given next to the numbers in Table 14.3. The test statistic 7 is then the
sum of the ranks in the control group, namely, 9 +1+19+16+4+6+2+20+ 17
+ 18 = 112. The sum of the ranks for the treatment group 77 is5+7+3+ 11+ 14 +
10+ 15+ 13 + 8 + 12 = 98. The higher rank sum for the control group is consistent
with the tendency for greater blood loss in the control group. Note that n; = n, = 10
and n, + n, =20. The sum of all the ranks (T+ 7")=1+2+3+...,20=210. T+
T' = (n, +ny)(n; +ny, +1)/2=(20)(21)/2 = 210. We also know that 7= 112. Alter-
natively, we can calculate 7" =210 - 7=210 - 112 =98.

Consulting tables for the Mann—Whitney (Wilcoxon) test statistic, we see that
the 10th percentile critical value is 88 and the 90th percentile critical value is 122.
We observed that 7= 112 and 7" = 98. The two-sided p-value of the observed sta-
tistic must be greater than 0.20. When the null hypothesis is true, the probability is
0.80 that the rank sum statistics fall between 88 and 122. Both 7 and 7" fall within
the range of 98 on the low side and 112 on the high side. So the difference in the
rank sums is not statistically significant at o = 0.20.

Recall that in Chapter 9 (using the same data as in this example), we found a
one-sided p-value of less than 0.05 when applying the ¢ test; i.e., the results were
significant. Why did the ¢ test give a different answer from the Wilcoxon test, and
which test should we believe? First of all, two dubious assumptions were made in
applying the ¢ test: the first was that the two distributions were normal and the sec-
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ond was that they both had the same variance. Histograms for the two samples
would probably convince you that the distributions are not normal. Also, the sample
standard deviation for the control group is approximately 2% times as large as for
the treatment group, indicating that the variances are not equal. Because we are on
shaky ground with the parametric assumptions, we should trust the nonparametric
analysis and conclude that there is insufficient information to detect a difference be-
tween the two populations. The nonsignificant results for the Wilcoxon test do not
mean that the central tendencies of the two groups are the same. Tests such as the
Wilcoxon rank-sum test are not very powerful at detecting differences in means (or
medians) when the variances of the two samples differ greatly, as is true of this
case. As the sample size is only 10 for each group, we may wish that we had col-
lected data on more pigs so that a difference in the blood loss distributions could
have been detected.

Most of the time, we will be using the normal approximation for the Wilcoxon
rank-sum test. Consequently, we have not included tables of critical values for this
test for use with small sample sizes. For large values (n; or n, greater than 20) a
normal approximation can be used. As before, we will use the sum of the ranks
from the first sample. The test statistic for the sum of the ranks for the control group
is denoted as 7. To use the normal approximation when there are many ties, take

ny(ny +ny + 1)
N 2
S

7=

where S is the standard deviation for 7 and n,(n, + n, + 1)/2 is the expected value of
the rank sum under the null hypothesis. S is the square root of S, where

. 2 R? nny(ny +ny +1)2
(ny +ny)(ny +ny— 1) 4(ny +ny— 1)

Here 3R? is the sum of the squares of the ranks for all the data. This result is given
in Conover (1999), page 273, using slightly different notation.

When there are no ties, Conover (1999) recommends a simpler approximation,
namely,

ny(ny +ny +1)
- 2
nyny(ny +ny + 1)
12

To summarize, Equation 14.1 describes the normal approximation for the
Wilcoxon rank-sum test for comparing two independent samples (no ties) that can
be used when n, and n, are large enough. Let 7 be the sum of the ranks for the
pooled observations from one of the groups (samples). Then
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ny(n, +ny+1)
2
Z'= (14.1)
niny(n, +ny + 1)

12

where T is the sum of the ranks in one of the groups (e.g., control group) and »; and
n, are, respectively, the sample sizes for samples from population 1 and population 2.

In the event of ties, the following normal approximation Wilcoxon rank-sum test
for comparing two independent samples (ties) should be used when 7, and n, are
large enough (i.e., greater than 20). Let 7 be the sum of the ranks for the pooled ob-
servations from one of the groups (samples). Then

ny(ny +ny + 1)

Z= 2 (14.2)
5 .

where T is the sum of the ranks from one of the groups (e.g., control group); n; and
n, are, respectively, the sample sizes for sample 1 and sample 2; and

nny2R7 nny(ny +ny + 1)

S2_ —
ny+ny(ng +ny—1) 4(ny +ny—1)

where 3¥,R? is the sum of the squares of the ranks for all the data (N = n, + n,).

In the next two sections, we will look at the nonparametric analogs to the paired
t test. They are the Wilcoxon signed-rank test (in Section 14.4) and the simpler but
less powerful sign test (in Section 14.5).

144 WILCOXON SIGNED-RANK TEST

Remember that a paired ¢ test involved taking the difference between two paired ob-
servations, i.e., d; = Xj,, — Xi,,- The Wilcoxon signed-rank test is a nonparametric
rank test that is analogous to the paired 7 test but is applicable when the differences
(d;) between the two groups are not approximately normally distributed. The proce-
dure of the Wilcoxon signed-rank test involves first computing the paired differ-
ences, as with the ¢ test. The absolute values of the differences are then computed
and the data ranked based on these absolute differences. After the ranks are deter-
mined, the observations are split into two distinct groups that separate the ones that
have negative differences from the ones that have positive differences. The rank
sums are then computed for the positive differences, with the test statistic denoted
as T*. This test statistic is then compared to the tables for the signed-rank test; the
tables are based on the distribution of this statistic when the central tendencies of
the two populations are the same. Alternatively, we could have computed the sum
of the negative ranks and denoted it by 7*.
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If the two populations are the same, the paired differences will be symmetric
about zero and therefore will have about the same number of positive and negative
differences, and the magnitude of these differences will not depend on the sign (i.e.,
whether or not they are in the positive difference group). Assume that we find the
differences between paired observations by subtracting the values for the second
observation from the values for the first observation (as shown in Table 14.4). If the
proportion of positive differences is high, it suggests that population one has a high-
er median than population two. A low proportion of positive differences indicates
that population one has a lower median than population two. In the event that a par-
ticular paired difference is identical (i.e., 0), that observation is omitted from the
calculation, and we proceed as if the number of pairs is one less than the original
number.

Recall from Chapter 9 the two cities data that we used to illustrate the paired ¢
test. We will use these data to demonstrate how the signed-rank test works. (See
Table 14.4.)

The fact that all the ranks are positive is a strong indicator that Washington was
warmer than New York. This finding replicates the very highly significant differ-
ence that was found using the paired ¢ test.

The absolute value of the difference determines the ranks. The smallest absolute
value gets rank 1, the next rank 2, and so on until we reach the largest with rank 12.
However, in the example in Table 14.4 there is a tie for the lowest, with four cases
having the value 2. When ties occur, all tied observations get the average of the tied
ranks. So the average of ranks 1, 2, 3, and 4 is 10/4 =2.5. Similarly the observed ab-
solute difference of 3 is tied in two cases and hence the average of the ranks 5 and 6
gives a rank of 5.5 to each of those tied observations.

The sum of the positive ranks is 78, and the sum of the negative ranks is 0. Since
n is small (12), we refer to the tables for the signed-rank test statistic. Recall that the

TABLE 14.4. Daily Temperatures, Washington versus New York

Washington New York Paired

Mean Mean Difference Absolute  Rank
Day Temperature (°F) Temperature (°F)  #1-#2  Difference (sign)
1 (January 15) 31 28 3 3 5.5()
2 (February 15) 35 33 2 2 2.5(+)
3 (March 15) 40 37 3 3 5.5(+)
4 (April 15) 52 45 7 7 12 (+)
5 (May 15) 70 68 2 2 2.5(+)
6 (June 15) 76 74 2 2 2.5(+)
7 (July 15) 93 89 4 4 7.5(+)
8 (August 15) 90 85 5 5 10 ()
9 (September 15) 74 69 5 5 10 (+)
10 (October 15) 55 51 4 4 7.5(+)
11 (November 15) 32 27 5 5 10 (+)
12 (December 15) 26 24 2 2 2.5(+)
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sum of the positive ranks is denoted by 7. Referring to Appendix C, we find that for
n =12 and p = 0.005, the critical value is 8. This outcome means that the probability
of observing a value less than 8 is 0.005. Similarly, from the tables the probability of
observing a value greater than 70 is 0.005. This is based on symmetry since the prob-
ability of the positive ranks being less than 8 under the null hypothesis is the same as
the probability of being greater than 78 — 8 = 70. Since we observed a signed-rank
score of 78, we know that the one-sided p-value is less than 0.005. So we conclude
that there is a difference between the two populations in the mean temperature.

A normal approximation can be used for large n. Conover (1999) recommends
that n be at least 50.

Let

nn+1)
=
n(n+1)2n+1)
24

7=

Then Z has approximately a standard normal distribution. So the standard normal
tables (Appendix E) may be used after calculating Z in order to obtain an approxi-
mate p-value for large n.

Another normal approximation that is simpler than the foregoing approximation
is based on the statistic 7= 7" — 7. The statistic 7" has a mean of zero under the null
hypothesis. So there is no expected value to subtract. For 7 (in the case when there
are no ties) we define the standard normal approximation as

T

n(n+1)(2n+1)
6

In the event of ties, we use Z = T/V 2.R?, where R, is the absolute rank of the ith ob-
servation (both positive and negative ranks are included in this sum).

The temperature data (refer to Table 14.4) are highly unusual because of the ex-
treme differences between the two cities; same-day pairing for each month of the
year is used to remove the seasonal effect. As a second example of pairing, we will
look at how twins score on a psychological test for aggressiveness (refer to Table
14.5). The data are from Conover (1999). The research question being addressed is
whether first-born twins are more aggressive than second-born twins.

The value of n is 11 because we discard one pair of observations for which the dif-
ference is 0. Here we see that the sum of the ranks for a sample size of 11 is 66 (1 +2
+3+4 ...+ 11). From the paired difference column, we see that the sum of the posi-
tive ranks is 41.5 and the sum of the negative ranks is 24.5. From the table for the
signed-rank test with n = 11 (Appendix C), we see that the critical value at the one-
sided 5% significance level is 55. Given that the sum of the positive ranks is 41.5, we
cannot reject the null hypothesis because the p-value is greater than 0.05. Therefore,
first-born twins do not tend to be more aggressive than second-born twins.
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TABLE 14.5. Aggressiveness Scores for 12 Sets of Identical Twins

Twin #1 Twin #2
(First Born) (Second Born) Paired Absolute
Twin Set  Aggressiveness  Aggressiveness  Difference  Difference  Rank (sign)

1 86 88 2 2 30)
2 71 77 -6 6 7()
3 77 76 1 1 1.5 (+)
4 68 64 4 4 4(+)
5 91 96 -5 5 55()
6 72 72 0 0 —
7 77 65 12 12 10 (+)
8 91 90 1 1 1.5 (+)
9 70 65 5 5 5.5(+)

10 71 80 -9 9 9(-)

11 88 81 7 7 8 (+)

12 87 72 15 15 11 (+)

Source: adapted from Conover (1999), page 355, Example 1, with permission.

The normal approximations for the signed-rank test, recommended when # is 50
or more, are summarized in Equations 14.3 (no ties) and 14.4 (ties). A normal ap-
proximation to the Wilcoxon signed-rank test for comparing two dependent sam-
ples (no ties) is

T
zZ= (14.3)

nn+1)2n+1)
V 6

where 7= T" — T~ is the sum of the ranks, and » is the common sample size for
both population 1 and population 2. A normal approximation to the wilcoxon
signed-rank test for comparing two independent samples (ties) is

T

R?

where T+ — T~ is the sum of the ranks, 2, R? is the sum of the squares of the absolute
ranks, and » is the common sample size for both population 1 and population 2.

14.5 SIGN TEST

The sign test is very much like the signed-rank test, only simpler. Again we com-
pute the paired differences, but instead of determining the ranks of the absolute dif-
ferences we just keep track of the number of positive (or negative differences). The
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sign of paired differences will have a binomial distribution with parameter p. If we
define p (the binomial success parameter) to be the probability of a positive sign,
and we eliminate cases with zero for the paired difference, then the parameter p will
be equal to 0.5 under the null hypothesis. So the sign test is simply a test that a bi-
nomial parameter p = 0.5, versus either a one-sided or two-sided alternative. Let us
look at the two examples from the previous section to illustrate the sign test. First
we will consider the temperature data for the two cities and then the example of ag-
gressiveness among twins.

Referring to Table 14.6, we see that the number of successes is 12, meaning that
for every month the temperature was higher in Washington than in New York. The
p-value for the test is defined as the probability of as extreme or a more extreme
outcome than the observed one under the null hypothesis. We see that the p-value is
(1/2)!2 = 0.000244. Remember from Chapter 5 that this probability is equivalent to
the probability of 12 consecutive heads in a coin toss experiment with a fair coin.
From this information, we can see that the significance of the test is less than p =
0.05 or p = 0.001, indicating that the differences are highly significant. In general,
the sign test is not as powerful as the signed-rank test because it disregards the in-
formation in the rank of the difference. Yet, in Table 14.6, the evidence is very
strong that the p-value is small, even for the sign test. Now let us apply the sign test
to the twin data (Table 14.7).

In this case, the p-value is the probability of getting 7 or more successes (shown
in Table 14.7 as 7 positive differences) in 11 trials when the binomial probability of
success is p = 0.50. The probability of observing 7 or more successes in 11 trials
when p = 0.50 is found to be 0.2744. So a p-value of 0.2744 indicates that the ob-
served number of successes easily could have happened by chance. Therefore, we
cannot reject the null hypothesis.

TABLE 14.6. Daily Temperatures for Two Cities

Washington New York Paired
Mean Mean Difference
Day Temperature (°F)  Temperature (°F) #1 —#2 Sign
1 (January 15) 31 28 3 +
2 (February 15) 35 33 2 +
3 (March 15) 40 37 3 +
4 (April 15) 52 45 7 +
5 (May 15) 70 68 2 i
6 (June 15) 76 74 2 +
7 (July 15) 93 89 4 +
8 (August 15) 90 85 5 +
9 (September 15) 74 69 5 +
10 (October 15) 55 51 4 +
11 (November 15) 32 27 5 +
12 (December 15) 26 24 2 +
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TABLE 14.7. Aggressiveness Scores for 12 Sets of Identical Twins

Twin #1 Twin #2
(First Born) (Second Born)

Twin Set Aggressiveness Aggressiveness Paired Difference =~ Rank (sign)
1 86 88 -2 -
2 71 77 -6 -
3 77 76 1 +
4 68 64 4 +
5 91 96 =5 -
6 72 72 0 —
7 77 65 12 +
8 91 90 1 +
9 70 65 +

10 71 80 -9 -
11 88 81 7 +
12 87 72 15 +

14.6 KRUSKAL-WALLIS TEST: ONE-WAY ANOVA BY RANKS

The Kruskal-Wallis test is a nonparametric analog to the one-way analysis of vari-
ance discussed in Chapter 13. It is a simple generalization of the Wilcoxon rank-
sum test. The problem is to identify whether or not three or more populations (inde-
pendent samples) have the same distribution (or central tendency). We test the null
hypothesis (H,) that the distributions of the parent populations are the same against
the alternative (H,) that the distributions are different. The rationale for the test in-
volves pooling all of the data and then applying a rank transformation. If the null
hypothesis is true, each group should have rank sums that are similar. If at least one
group has a higher (or lower) median than the others, it should have a higher (or
lower) rank sum. Table 14.8 provides an example of data layout for several samples
(e.g., k samples), following the model for the Kruskal-Wallis test.

To describe the test procedure, we need to use some mathematical notation. Let
X; represent the jth observation from the ith population. We assume that there are k
= 3 populations and for population i we have n; observations. N = the total number

TABLE 14.8. Data Layout for Kruskal-Wallis Test

Observation Sample 1 Sample 2 . Sample k&
1 Xy X1 X
2 Xl,z Xz,z Xk,z
Ny Xim, Xony Xin,

Source: adapted from Conover, 1999, page 288.
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of observations. Let N = 3% »; and for each i let R, be the sum of the ranks for the
observations in the ith population. That is, R, = 27, R(X;) for each i, where i = 1, 2,
., k). The test statistic is defined as

- 1 (" R%_N(N+1)2)

F =1 M 4

where

k n
§2= 11<221R(Xu)2 Lzl)z)

=1 j=1

In the absence of ties, §? simplifies to N(N + 1)/12, and T is defined by the follow-
ing equation for a chi-square approximation to the Kruskal-Wallis rank test for
comparing three or more independent samples (no ties) is

12 K R?
m Z—l 3(N+1) (14.5)

where n; is the sample size for the ith population and N is the total sample size.

This test statistic has a distribution with a chi-square approximation when there
are no ties. Under the null hypothesis that the distributions are the same, the test sta-
tistic’s distribution has been tabulated for small values of N. The tables of critical
values for T are not included in this text. When N is large, an approximate chi-
square distribution can be used. In fact, the test statistic 7" has approximately a chi-
square distribution with & — 1 degrees of freedom, where & again refers to the num-
ber of samples. The approximate test has been shown to work well even when N is
not very large. See Conover (1999) for details and references.

Equation 14.6 gives the chi-square approximation to the Kruskal-Wallis rank
test for comparing three or more independent samples in the event of ties:

T=

1 (" R? N(N+1)2)
— _— (14.6)

SZ

=1 M 4
where

n
Ri= 2 R(X;)
£
1 (L (N+1)?
§2= 1 (2 ZR(XU)2 T)

=1 j=1
n; is the sample size for the ith population
N is the total sample size

The SAS procedure NPARIWAY can be used to perform the Kruskal-Wallis
test. That procedure also allows you to compare the results to the F test used for a
one-way ANOVA.
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To illustrate the Kruskal-Wallis test, we take an example from Conover (1999).
In this example, three instructors are compared to determine whether they are simi-
lar or different in their grading practices. (See Table 14.9.). This example demon-
strates a special case in which there are many ties, which occur because the ordinal
data have a restricted range.

Table 14.9 provides the rankings for these data. As is usual with grades, f'is the
lowest rank, then D, then C, then B, and finally A. From the pooled total we see
that the number of Fs given by the three instructors is 9. As a result, each of the
9 students gets an average rank of 5 = (9 + 1)/2. The respective counts and rank-
ings for the remaining grades are D (19, rank 19), C (34, rank 46.5), B (27, rank
76), and A (20, rank 99.5). The ranking of 19 for Ds is based on the fact that there
are 9 Fs and 19 Ds. So the rank for Ds is 9 + (19 + 1)/2 =9 + 10 = 19. The rank
for Cs comes from 28 Ds and Fs along with 34 Cs for 28 + (34 + 1)/2 =28 + 17.5
=45.5. For Bs we get the rank from 62 Cs, Ds and Fs along with 27 Bs for 62 +
(27 + 1)/2 = 62 + 14 = 76. Finally, the rank for the As is obtained by taking the
89 Bs, Cs, Ds and Fs along with 20 As for 89 + (20 + 1)/2 = 89 + 10.5 = 99.5.
Conover (1999) chooses to rank the As with the lowest rank and the Fs with the
highest rank. We chose to give As the highest rank and Fs the lowest. For pur-
poses of the analysis, assigning the highest rank to A or f does not affect the out-
come of the test. Our choice was made because we like to think of high ranks cor-
responding to high grades. For each cell in Table 14.9, we multiply the number
shown in the cell by the rank for that row (e.g., 4 x 99.5 = 398. Table 14.10
shows the resulting values; for example, the value in cell one is 398. Then we ap-
ply the formulas in Equation 14.6. Based on the formula for $?, we see that $? =
{(5 9 + (19)? 19 + (45.5)? 34 + (76)%> 27 + (99.5)> 20 —109 (110)*/4}/108 =
941.708 and T = {(2359.5)%/43 + (2023.5)*/38 + (1612)%/28-109(110)%/4}/8* =
0.321. These results for T and S? are identical to Conover’s, even though we
ranked the grades in the opposite way. Based on the approximate chi-square with
2 degrees of freedom distribution for T, the critical value for o = 0.05 is 5.991.
Because our calculated 7 = 0.321, the association between instructors and grades
assigned is not statistically significant.

TABLE 14.9. Grade Counts for Students by Instructor

Instructor

Grade 1 2 3 Row Totals Rank
A 4 10 6 20 99.5
B 14 6 7 27 76
C 17 9 8 34 45.5
D 6 7 6 19 19
F 2 6 1 9 5
Total # of students 43 38 28 109

Source: adapted from Conover, 1999, page 293, example 2, with permission.
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TABLE 14.10. Ranks for Grade Counts for Students by Instructor

Instructor
Grade 1 2 3 Row Totals
A 398 995 597 1990
B 1064 456 532 2052
C 773.5 409.5 364 1547
D 114 133 114 361
F 10 30 5 45
Rank sums by instructor 2359.5 2023.5 1612 5995

14.7 SPEARMAN’S RANK-ORDER CORRELATION COEFFICIENT

In Section 12.4, we introduced the Pearson product moment correlation between
two random variables X and Y. Recall that the Pearson correlation coefficient is a
measure of the degree of the linear relationship between X and Y. Statistical signifi-
cance tests for a nonzero correlation were derived when X and Y can be assumed to
have a bivariate normal distribution. We also saw that if X and Y are functionally re-
lated in a nonlinear way, the absolute value of the correlation would be less than 1.
For example, a nonlinear functional relationship might be ¥ = X,. In this case, if we
looked at values in the range on X between zero and 1, we would find a positive cor-
relation that is less than 1. Looking at the interval between —1 and zero, we would
find a negative correlation between zero and —1.

Now we will measure correlation in a more general way that satisfies two condi-
tions. (1) X and Y are allowed to have any joint distribution and not necessarily the
bivariate normal distribution. (2) The correlation between X and Y will have the
property that as X increases Y increases (or decreases), then the correlation measure
will be +1 (or —1). In this case if ¥ = In(X) for X > 1 or ¥ = X? for X > 0, then the
correlation between Y and X will be +1 since Y never decreases as X increases over
the range of permissible values. Similarly, if ¥ = exp(=X) for X > 0, then ¥ and X
will have correlation equal to —1. Statisticians have derived nonparametric mea-
sures of correlation that exhibit the foregoing two properties. Two examples are
Spearman’s tho (p,,), attributed to Spearman (1904), and Kendall’s tau (7), intro-
duced in Kendall (1938). Both of these measures have been shown to satisfy condi-
tions (1) and (2) above.

In this text, we will discuss only Spearman’s rho, which is very commonly used
and easy to describe. Rho is derived as follows:

1. Separately rank the measurements (X;, Y;) for the Xs and ¥s in increasing order.

2. Replace the pair (X, Y;) for each i with its rank pair (i.e., if X; has rank 4 and
Y, rank 7, the transformation replaces the pair with the rank pair (4, 7).

3. Apply the formula for Pearson’s product moment correlation to the rank pairs
instead of to the original pairs. The result is Spearman’s rho.
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Spearman’s rho enjoys the property that all of its values lie between —1 and 1.
This result obtains because rho is the Pearson correlation formula applied to ranks.
If Y is a monotonically increasing function of X (i.e., as X increases, Y increases),
then the rank of X; will match the rank of Y,. This relationship means that the ranked
pairs will be (1, 1), (2,2), (3, 3), ..., (n, n).

A scatter plot would show these points falling perfectly on a 45° line in a
plane. Recall that for Pearson’s correlation formula, a perfect linear relationship
with a positive slope gives a correlation coefficient of 1. So if Y is a monotoni-
cally increasing function of X, the Spearman correlation coefficient (rho) between
X and Yis 1. Similarly, one can argue that if Y is a monotonically decreasing func-
tion of X, the rank pairs will be (1, n), 2, n—1), 3, n—-2),...,(n—-1,2), (n, 1).
The smallest value of X corresponds to the largest value of Y. Consider the exam-
ple Y = exp(—X) with values at X = 1, 1.5, 2, 2.5, and 3. The number of pairs is
n = 5 and these pairs are [X, exp(—X)], which equal (1, 0.368), (1.5, 0.223),
(2, 0.135), (2.5, 0.082), and (3, 0.050) where we have rounded exp(—X) to three
decimal places. Note that the ranks for the Xs are 1 for 1, 2 for 1.5, 3 for 2, 4 for
2.5, and 5 for 3. The corresponding Ys have ranks 5 for 0.368, 4 for 0.223, 3 for
0.135, 2 for 0.082, and 1 for 0.050. So the pairs are (1, 5), (2, 4), (3, 3), (4, 2) and
(5, 1). A scatter plot of such pairs would show that these rank pairs fall perfectly
on a line with a slope of —1. Hence, the Spearman correlation coefficient in this
case is —1.

The computational formula for Spearman’s rank correlation rho with ties is giv-
en by Equation 14.7:

” n+1\2
;R(M(Y,-)—n( > )

[iR(Xi)z _ n( ! ; ! )2}1/2[§R(Yi)2 n (” er ! ﬂm (14.7)

where 7 is the number of ranked pairs, R(X;) is the rank of X;, and R(Y;) is the rank
of ¥,.
When there are no ties, the formula in Equation 14.7 simplifies to Equation 14.8:

psp =

B 6T
Pp =17 nn?—1)
where T =3, [R(X)) — R(Y))]?, n is the number of ranked pairs, R(X;) is the rank of
X;, and R(Y,) is the rank of Y.

To illustrate the use of the foregoing equations, we will compute the Spearman
rank correlation coefficient between temperatures paired by date and for the twins’
aggressiveness scores paired by birth order of the siblings. Table 14.11 illustrates
the computation for the temperatures.. Since there are no ties in rank, we can use
Equation 14.8. The term in the last column of Table 14.11 is the ith term in the sum

ERX) - R
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TABLE 14.11. Daily Temperature Comparison for Two Cities

Washington New York
Mean Mean
Temperature (°F) Temperature (°F) Term

Day (rank) (rank) Rank Pair  [R(X)) — R(Y))]?
1 (January 15) 31(2) 28 (3) 2,3) 1

2 (February 15) 35(@4) 33 (4) 4,4 0

3 (March 15) 40 (5) 37 (5) (5,5) 0

4 (April 15) 52 (6) 45 (6) (6, 6) 0

5 (May 15) 70 (8) 68 (8) 8, 8) 0

6 (June 15) 76 (10) 74 (10) (10, 10) 0

7 (July 15) 93 (12) 89 (12) (12, 12) 0

8 (August 15) 90 (11) 85 (11) (11, 11) 0

9 (September 15) 74 (9) 69 (9) 9,9) 0

10 (October 15) 55(7) 51(7) @,7) 0

11 (November 15) 32(3) 27 (2) 3,2 1

12 (December 15) 26 (1) 24 (1) 1,1 0

T — — — 2

pyy = 1-6T/(n{n*>—1}) — — — 0.9930

Table 14.12 provides the same calculations for the twins. As there are a few ties
in this case, we cannot use Equation 14.8 but instead must use Equation 14.7.

14.8 PERMUTATION TESTS

14.8.1 Introducing Permutation Methods

The ranking procedures described in the present chapter have an advantage over
parametric methods in that they do not depend on the underlying distributions of
parent populations. As we will discuss in Section 14.9, ranking procedures are not
sensitive to one or a few outlying observations. However, a disadvantage of ranking
procedures is that they are less informative than corresponding parametric tests. In-
formation is lost as a result of the rank transformations. For the sake of constructing
a distribution-free method, we ignore the numerical values and hence the magnitude
of differences among the observations. Note that if we observed the values 4, 5, and
6 we would assign them ranks 1, 2, and 3 respectively. On the other hand, had we
observed the values 4, 5, and 10, we would still assign the ranks 1, 2, and 3, respec-
tively. The fact that 10 is much larger than 6 is lost in the rankings.

Is there a way for us to have our cake and eat it too? Permutation tests retain the
information in the numerical data but do not depend on parametric assumptions.
They are computer-intensive techniques with many of the same virtues as the boot-
strap.
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TABLE 14.12. Aggressiveness Scores for 12 Identical Twins
Twin #1 Twin #2
Ist Born 2nd Born
Aggressiveness Aggressiveness Term
Twin Set (rank) (rank) Rank Pair R(X)R(Y))
1 86 (8) 88 (10) (8, 10) 80
2 71 (3.5) 77 (7) (3.5,9) 17.5
3 77 (6.5) 76 (6) (6.5, 6) 39
4 68 (1) 64 (1) (LD 1
5 91 (11.5) 96 (12) (11.5,12) 138
6 72 (5) 72 (4.5) (5,4.5) 2255
7 77 (6.5) 65 (2.5) (6.5,2.5) 16.25
8 91 (11.5) 90 (11) (11.5,11) 126.5
9 70 (2) 65 (2.5) (2,2.5) 5
10 71 (3.5) 80 (8) (3.5, 8) 28
11 88 (10) 81 (9) (10, 9) 90
12 87 (9) 72 (4.5) (9,4.5) 40.5

Numerator for g,
Denominator for p,,

604.25-507 =97.25
11.90*10.86 =129.2

Py — — 0.7527

In the late 1940s and early 1950s, research confirmed that under certain condi-
tions, permutation methods can be nearly as powerful as the most powerful para-
metric tests. This observation is true as sample sizes become large [see, for exam-
ple, Lehmann and Stein (1949) and Hoeffding (1952)]. Although permutation tests
have existed for more than 60 years, their common usage has emerged only in the
1980s and 1990s. Late in the twentieth century, high-speed computing enabled one
to determine the exact distributions of permutations under the null hypothesis. Per-
mutation statistics generally have discrete distributions. Computation of all possible
values of these statistics and their associated probabilities when the null hypothesis
is true allows one to calculate critical values and p-values; the resulting tables are
much like normal probability tables used for parametric Gaussian distributions

The concepts underlying permutation tests, also called randomization tests, go
back to Fisher (1935). In the case of two populations, assume we have data from
two distributions denoted as X, X, . . ., X,, for the first population, and Y;, Y, . . .,
Y,, for the second population. The test statistic is 7= 2X;; we ask the question “How
likely is it that we would observe the value 7 that we obtained if the Xs and the Ys
really are independent samples from the same distribution?” This is our “null hy-
pothesis™: the two distributions are identical and the samples are obtained indepen-
dently.

The first assumption for this test is that both samples are independent random
samples from their respective parent populations. The second is that at least an in-
terval measurement scale is being used. Under these conditions, and assuming the
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null hypothesis to be true, it makes sense to pool the data because each X and Y
gives information about the common distribution for the two samples.

As it makes no difference whether we include an X or a Y in the calculation of T,
any arrangement of the n + m observations that assigns » to group one and m to
group two is as probable as the other. Hence, under the null hypothesis, any assign-
ment to the Xs of n out of the n + m observations constitutes a value for T. Recall
from Chapter 5 that there are exactly C(n + m, n) = (n + m)!/[n! m!] ways to select n
observations from pooled data to serve as the Xs.

Each arrangement leads to a potentially different value for 7' (some arrangements
may give the same numerical values if the Xs and Ys are not all different values).
The test is called a permutation test because we can think of the pooled observa-
tions as Z;, Zs, . .. , Zyy Zpits Zyioy - - - » Zysm» Where the first n of Zs are the original
Xs and the next m are the Ys. The other combinations can be obtained by a permuta-
tion of the indices from 1 to n + m, where the Xs are taken to be the first #» indices
after the permutation.

The other name for a permutation test—randomization test—comes about be-
cause each selection of ns assigned to the Xs can be viewed as a random selection of
n of the samples. This condition applies when the samples are selected at random out
of the set of n + m values. Physically, we could mark each of the n + m values on a
piece of paper, place and mix them in a hat and then reach in and randomly draw out
n of them without replacing any in the hat. Hence, permutation methods also are said
to be sampling without replacement. Contrast this to a bootstrap sample that is se-
lected by sampling a fixed number of times but always with replacement.

Since under the null hypothesis each permutation has the probability 1/C(n + m,
n), in principle we have the null distribution. On the other hand, if the two popula-
tions really are different, than the observed T should be unusually low if the Xs tend
to be smaller than the Ys and unusually large if the Xs tend to be larger than the Ys.
The p-value for the test is then the sum of the probabilities for all permutations
leading to values of 7 as extreme or more extreme (equal or larger or smaller) than
the observed 7.

So if k is the number of values as extreme as or more extreme than the observed 7,
the p-value is &/C(n + m, n). Such a p-value can be one-sided or two-sided depending
on how we define “more extreme.” The process of determining the distribution of the
test statistic (7)) is in principle a very simple procedure. The problem is that we must
enumerate all of these permutations and calculate 7 for each one to construct the cor-
responding permutation distribution. As n and m become large, the process of gener-
ating all of these permutations is a very computer-intensive procedure.

The basic idea of enumerating a multitude of permutations has been generalized
to many other statistical problems. The problems are more complicated but the idea
remains the same, namely, that a permutation distribution for the test can be calcu-
lated under the null hypothesis. The null distribution will not depend on the shape
of the population distributions for the original observations or their scores.

Several excellent texts specialize in permutation tests. See, for example, Good
(2000), Edgington (1995), Mielke and Berry (2001), or Manly (1997). Some books
with the word “resampling” in the title include permutation methods and compare
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them with the bootstrap. These include Westfall and Young (1993), Lunneborg
(2000), and Good (2001).

Another name for permutation tests is exact tests. The latter term is used be-
cause, conditioned on the observed data, the significance levels that are determined
for the hypothesis test have a special characteristic: The significance levels satisfy
the exactness property regardless of the population distribution of the pooled data.

In the 2 X 2 contingency table in Section 11.6, we considered an approximate
chi-square test for independence. The next section will introduce an exact permuta-
tion test known as Fisher’s exact test. This test can be used in a 2 x 2 table when the
chi-square approximation is not very good.

14.8.2 Fisher’s Exact Test

In a 2 x 2 contingency table, the elements are sometimes all random, but there are
occasions when the row totals and the column totals are restricted in advance. In
such cases, a permutation test for independence (or differences in group propor-
tions), known as Fisher’s exact test, is appropriate. The test is attributed to R. A.
Fisher, who describes it in his design of experiments text (Fisher, 1935). However,
as Conover (1999) points out, it was also discovered and presented in the literature
almost simultaneously in Irwin (1935) and Yates (1934).

Fisher and others have argued for its more general use based on conditioning ar-
guments. As Conover (1999) points out, it is very popular for all types of 2 x 2 ta-
bles because its exact p-values can be determined easily (by enumerating all the
more extreme tables and their probabilities under the null hypothesis). As in the
chapter on contingency tables, the null hypothesis is that if the rows represent two
groups, then the proportions in the first column should be the same for each group
(and, consequently, so should the proportions in the second column).

Consider N observations summarized in a 2 x 2 table. The row totals 7 and N — r
and the column totals ¢ and N — ¢ are fixed in advance (or conditioned on after-
wards). Refer to Table 14.13.

Because the values of r, ¢, and N are fixed in advance, the only quantity that is ran-
dom is x, the entry in the cell corresponding to the intersection of Row 1 and Column
1. Now, x can vary from 0 up to the minimum of ¢ and r. This limit on the value is due
to the requirement that the row and column totals must always be r for the first row
and c for the first column. Each different value of x determines a new distinct contin-
gency table. Let us specify the null hypothesis that the probability p, of an observa-
tion in row 1, column 1 is the same as the probability p, of an observation in row 2,

TABLE 14.13. Basic 2 x 2 Contingency Table for Fisher’s Exact Test

Column 1 Column 2 Row Totals
Row 1 X r—x r
Row 2 c—x N—-r—-c+x N-r

Column Totals c N-c N
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column 1. The null distribution for the test statistic 7, defined to be equal to x, is the
hypergeometric distribution. Equation 14.9 defines the test statistic 7.

While not covered explicitly in previous chapters, the hypergeometric distribu-
tion is similar to discrete distributions that were discussed in Chapter 5. Remember
that a discrete distribution is defined on a finite set of numbers. The hypergeometric
distribution used for calculating test statistic for Fisher’s exact test is given in Equa-
tion 14.9. Let T be the cell value for column 1, row 1 in a 2 x 2 contingency table
with the constraints that the row one total is » and the column one total is ¢, with r
and c less than or equal to the grand total N. Then forx=0, 1, ..., min(7, ¢),

_ Cr,x)C(N-r,c—x)
- C(N, ¢)

P(T=x) (14.9)

and P(T = x) = 0 for all other values of x.
A one-sided p-value for Fisher’s exact test is calculated as follows:

1. Find all 2 x 2 tables with the row and column totals of the observed table and
with row 1, column 1 cell values equal to or smaller than the observed x.

2. Use the hypergeometric distribution from Equation 14.9 to calculate the
probability of occurrence of these tables under the null hypothesis.

3. Sum the probabilities over all such tables.

The result at step (3) is the one-sided p-value. Two-sided and opposite one-sided p-
values can be obtained according to a similar procedure. One needs to define the re-
jection region such that it is the area on one tail of the distribution that is comprised
of probabilities that are as extreme as or more extreme than the significance level of
the test. The second side or the opposite side would be the corresponding area on
the opposite end of the distribution. The next example will illustrate how to carry
out the procedure described above.

Example: Lady Tasting Tea

Fisher (1935) gave a now famous example of a lady who claims that she can tell sim-
ply by tasting tea whether milk or tea was poured into a cup first. Fisher used this ex-
ample to demonstrate the principles of experimental design and hypothesis testing.
Let us suppose, as is described in Agresti (1990), page 61, that an experiment
was conducted to test whether the lady simply is taking guesses versus the alterna-
tive that she has the skill to determine the order of pouring the two liquids. The lady
is given eight cups of tea, four with milk poured first and four with tea poured first.
The cups are numbered 1 to 8. The experimenter has recorded on a piece of paper
which cup numbers had the tea poured first and which had the milk poured first.
The lady is told that four cups had milk poured first and four had tea poured first.
Given this information, she will designate four of them for each group. This design
is important because it forces each row and column total to be fixed (see Table
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TABLE 14.14. Lady Tasting Tea Experiment: 2 X 2 Contingency Table for Fisher’s
Exact Test

Milk Guessed Tea Guessed
Poured First as Poured First as Poured First Row Totals
Milk X 4—x 4
Tea 4—x X 4
Column Totals 4 4 8

14.14). In this experiment, the use of Fisher’s exact test is appropriate and uncon-
troversial. For other designs, the application of Fisher’s exact test may be debatable
even when there are some similarities to the foregoing example.

For this problem, there are only five contingency tables: (1) Correctly labeling all
four cups with milk poured first and, hence, all with tea poured first; (2) incorrectly
labeling one with milk poured first and, hence, one with tea poured first; (3) incor-
rectly labeling two with milk poured first (also two with tea poured first); (4) incor-
rectly labeling three with milk poured first (also three with tea poured first); and (5)
incorrectly labeling all four with milk poured first (also all four with tea poured first).

Case (3) is the most likely under the null hypothesis, as it would be expected
from random guessing. Cases (1) and (2) favor some ability to discriminate, and (4)
and (5) indicate good discrimination but in the wrong direction. However, the sam-
ple size is too small for the test to provide very strong evidence for the lady’s abili-
ties, even in the most extreme cases in this example when she guesses three or four
outcomes correctly.

Let us first compute the p-value when x is 3. In this case, it is appropriate to per-
form a one-sided test, as a significant test statistic would support the claim that she
can distinguish the order of pouring milk and tea. We are testing the alternative hy-
pothesis that the lady can determine that the milk was poured before the tea versus
the null hypothesis that she cannot tell the difference in the order of pouring. Thus,
we must evaluate two contingency tables, one for x = 3 and one for x = 4. The ob-
served data are given in Table 14.15.

The probability associated with the observed table under the null hypothesis is
C4,3)C(4, 1)/C(8,4)=(444D/(87 6 5)=8/35=10.229. The only table more ex-
treme that favors the alternative hypothesis is the perfect table, Table 14.16.

TABLE 14.15. Lady Tasting Tea Experiment: Observed 2 x 2 Contingency Table for
Fisher’s Exact Test

Milk Guessed Tea Guessed
Poured First as Poured First as Poured First Row Totals
Milk 3 1 4
Tea 1 3 4

Column Totals 4 4 8
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TABLE 14.16. Lady Tasting Tea Experiment: More Extreme 2 x 2 Contingency Table
for Fisher’s Exact Test

Milk Guessed Tea Guessed
Poured First as Poured First as Poured First Row Totals
Milk 4 0 4
Tea 0 4 4
Column Totals 4 4 8

The probability of this table under the null hypothesis is 1/C(8, 4) = 1/ 70 =
0.0142. So the p-value for the combined tables is 0.229 + 0.014 = 0.243. If we ran
the tea drinking experiment and observed an x of 3, we would have an observed p-
value of 0.243; this outcome would suggest that we cannot reject the null hypothe-
sis that the lady is unable to discriminate between milk or tea poured first.

14.9 INSENSITIVITY OF RANK TESTS TO OUTLIERS

Outliers are unusually large or small observations that fall outside the range of most
of the measurements for a specific variable. (Outliers in a bivariate scatter plot were
illustrated in Chapter 12, Figure 12.4) Outliers impact the parametric tests that we
have studied in the previous chapters of this text; for example, Z tests and ¢ tests for
evaluating the differences between two means; ANOVAs for evaluating the differ-
ences among three or more means; and tests for nonzero regression slopes and
nonzero correlations. Rank tests are not sensitive to outliers because the rank trans-
formation replaces the most extreme observations with the highest or lowest rank,
depending on whether the outlier is in the upper or lower extreme of the distribu-
tion, respectively.

In illustration, suppose that we have a data set with 10 observations and a mean
of 20, and that the next to the largest observation is 24 and the smallest is 16, but the
largest observation is 30. To show that it is possible for this data set to have a mean
of 20, we ask you to consider the following ten values: 16, 16.5, 16.5, 16.5, 17,
19.5, 21, 23, 24, 30. Note that the sum is 200 and hence the mean is 20. Clearly, the
largest observation is an outlier because it differs from the mean by 10 more than
the entire range (only 8) of the other 9 observations. The difference between the
largest and the second largest observation is 6. However, the ranks of the largest
and second largest observations are 10 and 9, respectively. The difference in rank
between the largest and second largest observation is always 1, regardless of the
magnitude of the actual difference between the original observations prior to the
transformation.

In conclusion, Chapter 14 has presented methods for analyzing data that do not
satisfy the assumptions of the parametric techniques studied previously in this text.
We called methods that are not dependent on the underlying distributions of parent
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populations (i.e., distribution-free methods) nonparametric techniques. Many of the
nonparametric tests involved ranking data instead of using their actual measure-
ments. As a result of ranking procedures, nonparametric tests lose information that
is provided by parametric tests. The Wilcoxon rank-sum test (also known as the
Mann—Whitney test) was used to evaluate the significance of differences between
two independently selected samples. The Wilcoxon signed-rank test was identified
as an analog to the paired ¢ test. When there were three or more independent groups,
the Kruskal-Wallis test was employed. Another nonparametric test discussed in this
chapter was Spearman’s rank order correlation coefficient. We also introduced per-
mutation methods, with Fisher’s exact test as an example.

14.10 EXERCISES

14.1  Apply the Wilcoxon rank-sum test to the following problem; we have modi-
fied the data from the pig blood loss experiment:

Pig Blood Loss Data (ml)
Control Group Pigs Treatment Group Pigs
786 743
375 766
3446 655
1886 923
478 1916
587 897
434 3028
3764 1351
2281 902
2837 1378

Sample mean = 1687.40 Sample mean = 1255.90

Do the results differ from the standard two-sample ¢ test with pooled vari-
ance? Are the p-values similar?

14.2  Apply the Wilcoxon rank-sum test in the following case to see if schizo-
phrenia is randomly distributed across the seasons:

Season of Birth Among 100 Schizophrenic Patients

Season Observed Number
Fall 20
Winter 35
Spring 20
Summer 25

Total 100
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14.3

14.4

14.5

14.6

14.7

NONPARAMETRIC METHODS
Using the following modification of the city data, apply the Wilcoxon
signed-rank test to determine whether there is a difference in average tem-

perature between the two cities. Compare your results to a paired ¢ test.

Daily Temperatures for Two Cities and Their Paired Differences

Washington New York Paired
Mean Mean Difference
Day Temperature (°F) Temperature (°F) #1—#2
1 (January 15) 31 38 -7
2 (February 15) 35 33 2
3 (March 15) 40 37 3
4 (April 15) 52 45 7
5 (May 15) 70 65 5
6 (June 15) 76 74 2
7 (July 15) 93 89 4
8 (August 15) 91 85 6
9 (September 15) 74 69 5
10 (October 15) 55 51 4
11 (November 15) 26 25 1
12 (December 15) 26 24 2

Apply the sign test to the above example. Did the results change? Which test
is more powerful, the sign test or the Wilcoxon signed-rank test? Why?

Suppose we compare four instructors for consistency of grading. Use the
following table to apply the Kruskal-Wallis test to determine whether there
is a difference among instructors.

Grade Counts for Students by Instructor

Instructor
Grade 1 2 3 4 Row Totals
A 4 10 6 20 40
B 14 6 7 10 37
C 17 9 8 5 39
D 6 7 6 5 24
F 2 6 1 10 19
Total # of students 43 38 28 50 159

Based on the temperature data in Exercise 14.3, use the day pairing to com-
pute a Spearman rank order correlation between the two cities.

Use the modified aggressiveness scores for twins (given in the table below)
to apply the Wilcoxon signed-rank test. What is the p-value?
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Twin #1 Twin #2
(First Born) (Second Born) Paired Absolute Rank
Twin Set Aggressiveness Aggressiveness Difference Difference  (sign)

1 85 88 -3 3 2(5)
2 71 78 -7 7 6()
3 79 75 4 4 3.5(+)
4 69 64 5 5 5(+4)
5 92 96 4 4 3.5()
6 72 72 0 0 —
7 79 64 15 15 11+
8 91 89 2 2 1(+)
9 70 62 8 8 7(+)

10 71 80 -9 9 8()

11 89 79 10 10 9 (+)

12 87 75 12 12 10 (+)

Source: modification of Example 1 page 355, Conover (1999).

14.8 Apply the sign test to the data in Exercise 14.7. Does the result change?
What is the p-value?

14.9 Using the modified aggressiveness scores with the aid of the table below,
determine Spearman’s rank order correlation for the twins.

Aggressiveness Scores for 12 Sets of Identical Twins

Twin #1 Twin #2
(First Born) (Second Born)
Aggressiveness  Aggressiveness Term
Twin Set (rank) (rank) Rank Pair R(X)) R(Y)
1 85 (8) 88 (10) (8, 10) 80
2 71 (3.5) 78 (7) 35,7 245
3 79 (6.5) 75(5.5) (6.5,5.5) 35.75
4 69 (1) 64 (2.5) (1,2.5) 2.5
5 92 (12) 96 (12) (12, 12) 144
6 72 (5) 72 (4) 6,4 20
7 79 (6.5) 64 (2.5) (6.5, 2.5) 16.25
8 91 (11) 89 (11) (11.5,11) 126.5
9 70 (2) 62 (1) 2,1 2
10 71 (3.5) 80 (9) (3.5,9) 315
11 89 (10) 79 (8) (10,8) 80
12 87 (9) 75(5.5) 9,5.5) 49.5

14.10 Recall the Lady Tasting Tea example. Suppose that instead of being given
four cups with milk poured first and four cups with tea poured first, the lady
was given five cups with milk poured first and five cups with tea poured first.
Suppose the outcome of the experiment was as shown in the table at the top
of the next page.
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Lady Tasting Tea Experiment:
Observed 2 x 2 Contingency Table for Fisher’s Exact Test

Milk Guessed Tea Guessed
Poured First as Poured First as Poured First Row Totals
Milk 4 1 5
Tea 1 4 5
Column Totals 5 5 10

a. Determine the more extreme tables.

b. Do a two-sided Fisher’s exact test at the 0.05 level of the null hypothesis
that the lady is guessing randomly.

c. Do a one-sided test at the 0.05 level.

d. What is the p-value for the two-sided test?

e. What is the p-value for the one-sided test?

f. Which test makes more sense here, one-sided or two-sided?
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CHAPTER 15

Analysis of Survival Times

A substantial portion of the lecture was devoted to risks. . . .

He emphasized that one in a million is a very remote risk.
—Phillip H. Abelson, Science, Editorial, February 4, 1994

15.1 INTRODUCTION TO SURVIVAL DATA

In survival analysis, we follow patients over time, until the occurrence of a particu-
lar event such as death, relapse, recurrence, or some other event that represents a di-
chotomy. Of special interest to the practitioners of survival analysis is the construc-
tion of survival curves, which are based on the time interval between a procedure
and an event.

Information from survival analysis is used frequently to assess the efficacy of
clinical trials. Researchers follow patients during the trial in order to track events
such as a recurrence of an illness, occurrence of an adverse event related to the
treatment, or death. The term “survival analysis” came about because often mortali-
ty (death) was studied as the outcome; however, survival analysis can be applied
more generally to many different types of events.

In a clinical trial, an investigator may want to compare a survival curve for a
treatment group with one for a control group to determine whether the treatment
is associated with increased longevity; one of the notable examples arises from the
area of cancer treatment studies, which focus on five-year survival rates after
treatment. A new, specialized area in survival analysis is the estimation of cure
rates. The investigator may believe that a certain percentage of patients will be
cured by a treatment and, thus, uses survival analysis to estimate the cure rate.
Section 15.2.4 will cover cure rate models that use a modification to the survival
curve.

Several characteristics of survival data make them different from most data we
encounter: (1) patients are in the study for varying amounts of time; (2) because
some patients experience the event, these are the ones who provide complete infor-
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mation; and (3) the trial is eventually terminated and the patients who have not ex-
perienced the event are “right-censored.” The term right-censored refers to the fact
that we do not know how much longer patients who remained in the trial until its
end would have gone event-free. The time to the event for them is at least the time
from treatment to the end of the study. Right-censoring is the primary characteristic
of survival data that makes the analysis unique and different from other methods
previously covered in this text.

As noted in point (1) above, a feature of data from survival analyses is that pa-
tients typically do not enter the study at the same time. Clinical trials generally have
an accrual period that could be six months or longer. Candidates for the study are
found and a sufficient number enrolled during the accrual period until statistical
power or precision requirements have been met.

Still another factor that produces varying amounts of observation time in the
study has to do with the initiation of disease onset. Although the time of occurrence
of the event is generally well defined and easily recognized, the onset of the clinical
syndrome leading to the event may be ambiguous. Thus, what is called “the starting
time” for the time to event is sometimes difficult to define. For example, if we are
studying a chronic disease such as cancer, diabetes, or heart disease, the precise
time of onset may be impossible to delineate.

A common substitute for date of onset is date of diagnosis. This alternative
may be unreliable because of the considerable lag that often exists between the
first occurrence of a disease and its diagnosis. This lag may be due to health ser-
vice utilization patterns (e.g., lack of health insurance coverage, infrequent doctor
visits, and delay in seeking health care) or the natural history of many chronic dis-
eases (e.g., inapparent signs and symptoms of the early phases of disease). Some
infections, such as HIV or hepatitis C, are associated with an extended latency pe-
riod between lodgment of a virus and development of observable symptoms.
Consequently, date of diagnosis is used as the best available proxy for date of on-
set.

With respect to point (2) above, some patients may be lost to follow-up. For ex-
ample, they decide to drop out of the study because they leave the geographic area.
Sometimes, statisticians treat this form of censoring differently from right censor-
ing. Although start times vary on the actual time scale, in survival analysis we cre-
ate a scale that ignores the starting time. We are interested only in the time interval
from entry into the study (or treatment time, beginning when the patient is random-
ized into a treatment group) until the event or censoring occurs. Thus, we modify
the time axis as if all patients start together.

We can use parametric models to describe patients’ survival functions. These
models are applicable when each patient is viewed as having a time to event that is
similar to a random draw from some survival distribution whose form is known ex-
cept for a few parameters (the exponential and Weibull distributions are examples
of such parametric models). When the parametric form is difficult to specify, non-
parametric techniques can be used to estimate the survival function. Details follow
in the next section.
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15.2 SURVIVAL PROBABILITIES

15.2.1 Introduction

Suppose we would like to estimate the survival of patients who are about to undergo
a clinical procedure. From an existing set of survival and censoring times observed
from patients who already have been in a clinical trial, we can estimate survival of
new patients about to experience the procedure. For example, to accomplish this ex-
trapolation, we could look at the survival history of patients with implanted defibril-
lators. We could try to predict the probability that a new patient planning to undergo
the same implant procedure would survive for a specified length of time.

Sometimes, researchers are interested in a particular time interval, such as sur-
viving for another five years (a common survival time). But often the time interval
is the whole curve, which represents survival for x months or more, for 0 <x <L,
where L is some period (usually L is less than or equal to the length of the study, but
if parametric methods are used, L can be longer). Altman (1991) provides an exam-
ple of data expressed as survival time in months. (Refer to Table 15.1.)

The methods for predicting survival times are clever and account for the fact that
some cases are censored. Researchers portray survival data in graphs or tables
called life tables, survival curves, or Kaplan—Meier curves (described in detail in
the next sections).

We will define the survival function and present ways of estimating it. Let S(¢)
denote the survival function. S(¢) = P(X > ), where X is the survival time for a ran-
domly selected patient. S(¢) represents the probability that a typically selected pa-
tient would survive a period of ¢ units of time after entry into the study (generally
after receiving the treatment). The methods described in Sections 15.2.2 and 15.2.3
use data similar to those given in Table 15.1 to estimate the survival curve S(¢) at
various times 7.

TABLE 15.1. Survival Times for Patients

Time at Entry Time at Death Dead or Survival Time
Patient no. (months) or censor (months) Censored (months)

1 0.0 11.8 D 11.8

2 0.0 12.5 C 12.5%

3 0.4 18.0 C 17.6*

4 1.2 44 C 3.2%

5 1.2 6.6 D 5.4

6 3.0 18.0 C 15.0%

7 3.4 4.9 D 1.5

8 4.7 18.0 C 13.3*

9 5.0 18.0 C 13.0*
10 5.8 10.1 D 43

*Censored observations.
Source: adapted from Altman (1991), p. 367, Table 13.1, with permission.
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We notice from Table 15.1 that patients are accrued during the first six months
of the study. We infer this from the fact that the last (10th) patient was entered at
5.8 months into the study. Patients are then followed until the 18th month, when the
trial is terminated. Note that the maximum time at death or censoring is 18 months.

Four patients died during the trial and six were known to be living at the end of
the trial or were lost to follow-up prior to the completion of the trial. (Refer to the
column labeled “Dead or Censored.”) So the survival times for those six were cen-
sored. Patients 3, 6, 8, and 9 completed the trial and were censored at the 18 month
time point; patients 2 and 4 were lost to follow-up; and the remaining patients (1, 5,
7, and 10) died.

The information in this table is all we need to construct a life table or a paramet-
ric (e.g., Weibull) or nonparametric (i.e., Kaplan—Meier) survival curve. In the next
section, we will use the data from Table 15.1 to illustrate how to construct a life
table.

15.2.2 Life Tables

Life tables give estimates for survival during time intervals and present the cumula-
tive survival probability at the end of the interval. The key idea for estimating the
cumulative survival for both life tables and the Kaplan—Meier curve is represented
by the following result for conditional probabilities: Let ¢, > ¢,. Let P(t,]t;) = P(X >
1,|X > t)), where X = survival time, ¢, = time at the beginning of the interval, and ¢, =
the time at the end of the interval. That is, P(2,|t,) is the conditional probability that
a patient’s survival time X is at least #,, given that we have observed the patient sur-
viving to #,. Using this conditional probability, we have the following product rela-
tionship for a survival curve, S(¢), as shown by Equation 15.1:

where

S = survival time

t, = initial time

t, = latter time point

For the life table, the key is to use the data in Table 15.1 to estimate P(,|¢,) at the
endpoints of the selected intervals. Remember that S(f) denotes the survival func-
tion. For the first interval from [0, @], we know that for all patients S(0) =1 and, ac-
cordingly, S(a) = P(a|0); i.e., all patients are alive at the beginning of the interval
and a portion of them survive until time a.

The life table method, also referred to as the Cutler—Ederer method (Cutler and
Ederer, 1958), is called an actuarial method because it is the method most often
used by actuaries to establish premiums for insuring customers.

Now we will construct a life table for the data in Table 15.1. We note from the
last column that the survival times, including the censored times, range from 1.5
months to 17.6 months. We will group the data in three-month intervals giving us
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seven intervals, namely, [0, 3), [3, 6), [6, 9), [9, 12), [12, 15), [15, 18), and [18, ).
(See Table 15.2.) For each interval, we need to determine the number of subjects
who died during that interval, the number withdrawn during the interval, the total
number at risk at the beginning of the interval, and the average number at risk dur-
ing the interval. From these quantities, we compute: (1) the estimated proportion
who died during the interval, given that they survived the previous intervals; and (2)
the estimated proportion who would survive during the interval given that they sur-
vived during the previous intervals.

Table 15.2 uses eight terms that may be unfamiliar to the reader. Following are
the precise definitions of these eight elements for a life table:

® The first column is labeled “Time Interval.” We denote the jth interval /.

® The number who die during the jth interval is D;. (D; counts all of the patients
whose time of death occurs during the jth interval.)

® The number withdrawn during the jth interval is ). (W, counts all of the pa-
tients whose censoring time occurs during the jth interval.)

® The number at risk at the start of the jth interval is N,. (This is the number of
subjects who entered into the study minus all deaths and all withdrawals that
occurred prior to the jth interval.)

® The average number at risk in the jth interval N/ = N; -W/2. Referring to the
second row of Table 15.2 under column N/, N/ =N, — W/2 =9 - 2= 8.5.
The term N;' reflects an actuarial technique to account for the fact that W, of
the patients who were at risk at the beginning of the interval are no longer at
risk at the end of the interval.

® N, represents the average number of patients at risk in the interval when the
withdrawals occur uniformly over the interval. We use N’ to improve the esti-
mate of the probability of not surviving during the jth interval. We define g; =
Dj/N;" and assert that D/N;’ is better than using D/N; or D/N,,,, where N;., is
the number at risk at the start of the j + 1 interval. We then define the estimate
of the conditional probability of surviving during the interval given that the pa-
tient survived during the previous j — 1 intervals as p;. The estimate for surviv-
ing past the jth interval is obtained by using the conditioning principle given in
Equation 15.1. In Table 15.2 (second row), ¢; = Dj/Nj’ =2/8.5=0.235.

® The estimated proportion surviving during the interval is p;. From Table 15.2
(second row), p; = (N;' — D))/N, = [(8.5 -2)/8.5] = 0.765.

® The cumulative survival estimate for the jth interval is denoted S; and is de-
fined recursively by S, = p; S;_;.

The method of recursion allows one to calculate a quantity such as S, by first
calculating S, and then providing a formula that shows how to calculate S| from S,
This same formula then can be used to calculate S, from S, and then S5 from S, and
so on until we get S, from §,,_;. In the method of recursion, the equation is called a
recursive equation. A calculation example will be given in the next section. Refer to
Table 15.2 to see the terms that we defined in the list above.
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TABLE 15.2. Life Table for Survival Times for Patients Using Data from Table 15.1
(N =38)

Average Estimated Estimated Estimated
Time Number  Number of Number Number Proportion Proportion Cumulative
Interval, of Deaths, Withdrawals, at Risk, atRisk, of Deaths, Surviving, Survival,

I D; W; N; N; q; p; S;
[0, 3) 1 0 10 10 0.1 0.9 0.9
[3,06) 2 1 9 8.5 0.235 0.765 0.688
[6,9) 0 0 6 6 0.0 1.0 0.688
[9, 12) 1 0 6 6 0.167 0.833 0.573

[12, 15) 0 3 5 3.5 0 1.0 0.573
[15,18) 0 2 2 1 0 1.0 0.573
[18, o) 0 0 0 0 — — —

15.2.3 The Kaplan-Meier Curve

The Kaplan—Meier curve is a nonparametric estimate of the survival curve (see Ka-
plan and Meier, 1958). It is computed by using the same conditioning principle that
we employed for the life table estimate in Section 15.2.2. Because the
Kaplan—Meier curve is an estimator based on the products of conditional probabili-
ties, it is also sometimes called the product-limit estimator.

The Kaplan—Meier curve starts out with S(¢) = 1 for all ¢ less than the first event
time (such as a death at #,). Then S(¢;) becomes S(0) (n;, — d,)/n,, where n, is the
number at risk at time #; and d, is the number who die at time #,. Referring to Table
15.2 (column S, first row), S(¢,) = S(0) [(n; —d,)/n;] = 1[(10 —1)/10] = 0.9. We sub-
stitute ;" for 7, in the formula. At the next time of death #,, S(t,) = S(t,) (n, — d>)/n,,
where n, and d, are, respectively, the corresponding number of patients at risk and
deaths at time #,. In Table 15.2 (second row), S(¢,) = S(¢,) [(n, — d5)/n,] = (0.9)[(8.5
—2)/8.5] = 0.688. The estimate S(¢) stays constant at all times between events (i.e.,
deaths) but jumps down by the factor (n; — d,)/n; at the time ¢, of the jth deaths. You
can verify this fact for the S; column in Table 15.2. We allow for the possibility of
more than one death at the same instant of time. The number at risk drops at with-
drawal times as well as at the times of death. Thus, we use Nj' instead of N, to esti-
mate 7, in the formula for S().

The Kaplan—Meier estimates can be portrayed in a table similar to the life table
(Table 15.2), except that the intervals will be the times between events. Table 15.3
shows the Kaplan—Meier estimate for the patient data used in the previous section
to construct a life table. Note that the column labels are essentially the same as
those in Table 15.2, with the following two exceptions: (1) the column labeled “Av-
erage Number at Risk, N;',” has been eliminated; and (2) the “Estimated Cumula-
tive Survival” becomes 5(#), a term that we defined in the foregoing paragraph.

In the row for ¢, under the column “Estimated Cumulative Survival” we obtain
0.9 by multiplying S, = 1 by p; = 0.9, where p, =1 — ¢, and ¢, = D,/N, = 1/10=0.1.
In the row for ¢,, g, = D,/N, = 1/8 =0.125. So p, = 1 — ¢, = 0.875 and, finally, S, =
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TABLE 15.3. Kaplan—-Meier Survival Estimates for Patients in Table 15.2

Estimated Estimated  Estimated

Time Number Number of  Number Proportion Proportion Cumulative
Interval, of Deaths, Withdrawals, atRisk, of Deaths, Surviving, Survival,
l D, W, N, g ? Stt)
Hh=15 1 0 10 0.1 0.9 0.9
t,=43 1 1 8 0.125 0.875 0.788
;=54 1 0 7 0.143 0.857 0.675
1, =118 1 0 6 0.167 0.833 0.562
>11.8 0 5 5 0 1.0 0.562

P51 = (0.875)(0.90) = 0.788. The remaining rows involve the same calculations
and the recurrence relation S, = p; S;_;.

Approximate confidence intervals for the Kaplan—Meier curve at specific time
points can be obtained by using the Greenwood formula for the standard error of the
estimate and a normal approximation for the distribution of the Kaplan—Meier esti-
mate. A simpler estimate is obtained based on the results in the paper by Peto et al.
(1977). _

In Greenwood’s formula, Var(S)) is estimated as V; = S}[E{:Iq,/(N,pi)]. Computa-
tionally, this is more easily calculated recursively as V; = S7[q,/(N; p)) + V; 1/S} 1],
where we define S, = 1 and ¥, =0.

Although the Greenwood formula is computationally easy using the recursion
equation, the Peto approximation is much simpler. Peto’s estimate of variance is
given by the formula W; = S7(1 — S;)/N;. The simplicity of this formula is that it de-
pends only on the survival probability estimate at time j and the number remaining
at risk at time j, whereas Greenwood’s formula depends on survival probability es-
timates, number at risk, and probability estimates of survival and death in preceding
time intervals.

Peto’s estimate has a heuristic interpretation. If we ignore the censoring and
think of failure by time j as a binomial outcome, to expect N; patients to remain at
time j we should have started with approximately N/S; patients. Think of this num-
ber (N/S;) as an integer corresponding to the number of patients in a binomial ex-
periment. Now the variance of a binomial proportion is p(1 — p)/n, where n is the
sample size and p is the success probability. In our heuristic argument, S, = p and
Nj/S; = n. So the variance is S(1 — S)/{N/S;} = S}(l - S)/N;. We see that this vari-
ance is just Peto’s formula.

The square root of these variance estimates (Greenwood and Peto) is the corre-
sponding estimate of the standard error of the Kaplan-Meier estimate S; at time ;.
Approximate confidence intervals then are obtained through a normal approxima-
tion that uses the normal distribution constants 1.96 for a two-sided 95% confidence
interval or 1.645 for a two-sided 90% confidence interval. So the Greenwood 95%
two-sided confidence interval at time j would be [S; - 1.96\/7]-, S+ 1.96\/7j] and
for Peto it would be [S; - 1.96\/Wj, S+ 1.96\/Wj]. Greenwood’s and Peto’s meth-
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Display 15.1. Greenwood’s Method for 95% Confidence
Interval of Kaplan—Meier Estimate

[S;— .96V, S; + 1.96 V7]

where §; = Kaplan—Meier survival probability estimate at the jth event time, and

J
V= S_%[Zl q/(N,pi)}

where ¢; is the probability of death in event interval i, p, = 1 — g; is the probabili-
ty of surviving interval i, and N, is the number of patients remaining at risk at the
ith event time. Alternatively, V; can be calculated by the recursion:

Vi=Sila/(Np)) + V; /S 74

ods are exhibited in Displays 15.1 and 15.2. Because we have used several approxi-
mations, these confidence intervals are not exact, but only approximate.

Now we can construct 95% confidence intervals for our Kaplan—Meier estimates
in Table 15.3. Let us compute the Greenwood and Peto intervals at time #; = 5.4.
For the Greenwood method, we must determine V5 first. We will do this using the
recursive formula, first finding V7, then V, from V;, and finally V5 from V,. So V; =
S?[q/(Nyp1)] = (0.9)? [0.1/(10(0.9)] = 0.9 (0.01) = 0.009. Then V, = 8% [¢,/(Nop,) +
V,/8%] = (0.788)% [0.125/(8 (0.875)) + 0.009/(0.9)?] = 0.621 [0.125/7 + 0.009/0.81]
=0.621(0.0179 + 0.0111) = 0.621(0.029) = 0.0180. Finally, V5 = S3[qs/(N5 p5) +
V,/83] = (0.675)? [0.143/{7(0.857)} + 0.018/(0.788)%] = 0.4556 [0.143/6] = 0.0109.
So the 95% confidence interval is [0.675 — 1.96V0.0109, 0.675 + 1.96V0.0109] =
[0.675 —0.2046, 0.675 + 0.2046] =[0.4704, 0.8796].

For the Peto interval, W5 is simply S3(1 — S;)/N; = (0.675)%(0.325/7) = 0.4556

Display 15.2. Peto’s Method for 95% Confidence
Interval of Kaplan—Meier Estimate

[S;—1.96V W, S;+1.96VIW]
where §; = Kaplan—Meier survival probability estimate at the jth event time, and

;=531 -S)IN,

where N, is the number of patients remaining at risk at the jth event time.
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(0.0464) = So the Peto interval is [0.675 — 1.96V0.0212, 0.675 + 1.96vV0.0212] =
[0.675 —0.285, 0.675 + 0.285] =[0.390, 0.960]. Note that the Peto interval is wider
and thus somewhat more conservative for the lower endpoint.

Some research [see Dorey and Korn (1987)] has shown that Peto’s method can
give better lower confidence bounds than Greenwood’s, especially at long follow-
up times in which the number of patients remaining at risk is small. The Greenwood
interval tends to be too narrow in these situations; hence, the FDA sometimes rec-
ommends using Peto’s method for the lower bound. We have seen how the Peto in-
terval is wider than the Greenwood interval in the foregoing example. For more de-
tails about the Kaplan—Meier curve and life tables, see Altman (1991) and Lawless
(1982).

As we can see from the example in Table 15.3, the Kaplan—Meier curve gives re-
sults similar to the life table method and is based on the same computational princi-
ple. However, the Kaplan—Meier curve takes step decreases at the actual time of
events (e.g., deaths), whereas the life table method makes the jumps at the end of
the group intervals.

The Kaplan—Meier curve is preferred to the life table when all the event times
are known precisely. For example, the Kaplan—-Meier method does a better job than
the life table when dealing with withdrawals when all withdrawals prior to an event
(such as death) are removed in determining the number of patients at risk. In con-
trast, the life table groups the events into time intervals; hence, it subtracts half the
withdrawals in the interval in order to estimate the interval survival (or failure)
probability.

However, there are many practical situations in which the event times are not
known precisely but an interval for the event can be defined. For example, recur-
rence of some event may be detected at follow-up visits, which could be scheduled
every three months. All that is really known is that the recurrence occurred between
the last two follow-up visits. So a life table with a three-month grouping may be
more appropriate than a Kaplan—-Meier curve in such cases.

Although survival curves are very useful, some difficulties occur when not all
the events are reported. Lack of completeness in reporting events is a common
problem that medical device companies confront when they report on the reliability
of their products using Kaplan—Meier estimates from passive databases (i.e., data-
bases that depend on voluntary reporting of problems). Such databases are notori-
ous for underreporting events and overestimating performance as estimated in the
survival curve. Techniques have been proposed to adjust these curves to account for
biases. However, no proposal is free from potential problems. See Chernick,
Poulsen, and Wang (2002) for a look at the problem of overadjustment with an al-
gorithm that has been suggested for pacemakers.

15.2.4 Parametric Survival Curves

If we give the survival function a specific functional form, we can estimate the sur-
vival curve based on just a few parameter estimates. We will illustrate this proce-
dure with the negative exponential and Weibull distributions.
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The negative exponential, a simple one-parameter family of probability distribu-
tions, models well the lifetime distributions for some products, such as electric light
bulbs; i.e., it is useful in describing their time to failure.

The Weibull distribution is a two-parameter family of distributions that has been
used even more widely than the negative exponential to model time to failure for
manufactured products. The Weibull distribution shares one major characteristic
with the normal distribution model; i.e., it is a limiting distribution. Each distribu-
tion is successful under certain circumstances.

Whereas the normal distribution is a limiting distribution for sums or averages of
independent observations with the same distribution, the Weibull is a limiting dis-
tribution for the smallest value in a sample of independent observations with the
same distribution.

Recall that in Chapter 7 we saw that as the sample size (n) increases, the sam-
pling distribution of means becomes more and more similar to a normal distribu-
tion. Because the distribution continues to become close to the normal distribution
as the sample size increases, we call the normal distribution a limiting distribution.
Similarly, if we have a sample of size n, the probability distribution for the smallest
value among the n observations approaches the Weibull distribution more closely
as the sample size n increases. To obtain standard forms for the Weibull as we did
with the normal distribution, we subtract a constant from the original statistic (e.g.,
minimum value in the sample) and then divide the result by another constant.

This procedure is analogous to Z = (X — w)/(6/\/n) for the standard normal dis-
tribution. The normal distribution works well when the variable of interest can be
viewed as a sum. The Weibull works well when the variable of interest can be
viewed as the smallest value.

For mortality, we can think of time to death as the time when an illness, exposure
factor, or other occurrence causes a person to die. Mortality can be modeled in
terms of many competing causes. For example, a person who dies in an automobile
accident is no longer at risk of dying from coronary heart disease. A mortality mod-
el can sort these competing causes in order to determine which one occurs first.
Suppose we specify the observed time of death that occurs for the first of these
competing causes. We denote this time as the minimum of random times to death.
In this particular situation, the Weibull model should fit well.

For the negative exponential distribution, the survival function S(¢) = e for all ¢
= 0. The single parameter A is called the rate parameter, which is also equal to the
so-called hazard function or instantaneous death rate. The term A represents the lim-
it of the probability of death in the next instant of time given survival up to time ¢.
Its mathematical definition is given in the next paragraph.

In survival analysis, the distribution function F(¢) is defined as F(f) = P(X = t) =
1 — S(#). For those who have studied differential equations, we note that the density
function for continuous functions F(f) is the first derivative of f and is denoted as
f(#). The hazard function A(¢) is defined as A(f) = f(¢)/S(#). We interpret A(f) as the
rate of occurrence of an event that happens in a small interval beyond ¢, given that it
has not occurred by ¢.

For the negative exponential model, F(f) = 1 — e and f(¢) = Ae™™. So h(t) =
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Ae /e = \. The exponential model has the property of a constant hazard rate.
This is sometimes called the lack of memory property because the rate does not de-
pend on ¢. Note that hazard rates usually depend on the time ¢.

The negative exponential model can be used for studying light bulbs, which are
no more likely to fail in the next five minutes when they have been on for one hun-
dred hours than they are in the first five minutes after being installed. This unusual
property is one of the reasons why, although good for modeling the life of light
bulbs, the exponential is not a good model in general. For many products we expect
the hazard rate to increase with age. Display 15.3, which is based on the survival
function, defines the negative exponential model.

A common model for mortality is the so-called bathtub-shaped hazard rate func-
tion. At or near birth, the hazard rate is high, but once the baby survives for a few
days the hazard rate drops significantly. For many years, the hazard rate stays flat
(constant). But as the person ages, the hazard rate starts to increase sharply. This
function would have the shape of a bathtub.

The Weibull model can be viewed also as a generalization of the negative expo-
nential. It is determined by two parameters, A and 8, where A refers to a rate para-
meter and 3 refers to the shape of the parameter distribution. The case 8 =1 is the
negative exponential (for reasons explained in the next paragraph). The model can
be defined by its distribution F(#), survival function S(¢), density function f(¢), or
hazard function A(#). The latter, A(f), can be used to derive mathematically each of
the other three functions: F(¢), S(¢), and f(f). So we can describe the Weibull by its
hazard function /(f). (Refer to Display 15.4 for the Weibull model.)

The Weibull model can have an increasing hazard rate, a decreasing hazard rate,
or in the special case of the negative exponential, a constant hazard rate. The
Weibull does not exhibit a bathtub shape. To obtain the bathtub shape, we need a
more complex parametric model. Such models are beyond the scope of this course.

We note that for 8 > 1, the hazard function is increasing in #; for =1, itis a
constant function of #; and for 8 <1 it is decreasing in ¢.

For complete data, likelihood methods are used to find the estimates of the para-
meters for survival distributions. Sometimes survival times are right-censored; the
estimation problem becomes more complicated. Many fine texts, including Lawless
(1982), provide methods for estimation (point estimates and confidence intervals)
and testing model parameters.

For the negative exponential, the point estimate of A is simply the number of

Display 15.3. Negative Exponential Survival Distribution
S(#) = exp(—Af)

where ¢t = 0, and A > 0 is the rate parameter. F(¢) = 1 — exp(—A?), f(t) = A
exp(—Af), and A(f) = A.
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Display 15.4. Weibull Survival Distribution
h(t) = AB(Ar)P!

where t = 0, A > 0 is the rate parameter, and 8 > 0 is the shape parameter. S(¢) =
exp[-(A1] and £(£) = AB(ADE ! exp[(ADP].

events divided by the total time on test, where the total time on test is defined as the
sum of the survival times for all the patients (time to censoring is used for the right-
censored cases). Once the parameter A has been estimated, the survival curve esti-
mate is determined by plugging the estimate for A into the formula. So if the estimate
for A is denoted A, and the estimate for the survival curve is S,(7), then S,(f) = e A’

Let us consider the data in Table 15.1 again. There are four events (deaths) at
11.8, 5.4, 1.5, and 4.3 months into the trial and six censored times at 3.2, 12.5, 17.6,
13.3, 15.0, and 13.0 months. The estimate A, is just the number of events/total time
ontest=4/(11.8+54+1.5+43+32+125+17.6+13.3+15.0+13.0)=4/97.6
=0.041. So S,(¢) = exp(-0.041¢).

Refer to Table 15.4. The column labeled “Estimated Cumulative Survival” com-
pares the survival estimates at the event time points, S,(#), for the negative exponen-
tial with the results for the Kaplan—Meier (KM) estimates (KM given in parentheses).
The discrepancies between the negative exponential and the Kaplan—Meier estimates
indicate that the exponential does not fit this model well. The discrepancy is particu-
larly noticeable at time 5.4 months, when the parametric estimate is 0.801 and the
Kaplan—Meier is 0.675. However, the sample size is small, and this discrepancy may
not be statistically significant. Note that for the exponential model the estimates S,(¢)
=e*hlj. So, since A, =0.041 at ¢, = 1.5, S),(t,) = exp[-0.041 (1.5)] = exp(-0.0615) =
0.940. At 1, =4.3, S,(t,) = exp[-0.041 (4.3)] = exp(-0.1763) = 0.838.

TABLE 15.4. Negative Exponential Survival Estimates for Patients in Table 15.2

Estimated
Cumulative
Estimated  Estimated Survival,
Time Number  Number of Number Proportion Proportion  for Negative
Interval, of Deaths, Withdrawals, atRisk, of Deaths, Surviving, Exponential*,
I D, W, N; q; p; Silty)
=15 1 0 10 0.1 0.9 0.940 (0.9)
L, =43 1 1 8 0.125 0.875 0.838 (0.788)
;=54 1 0 7 0.143 0.857 0.801 (0.675)
t,=11.8 1 0 6 0.167 0.833 0.616 (0.562)
18 0 5 5 0 1.0 0.478 (0.562)

*Kaplan—Meier estimates are shown in parentheses.
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15.2.5 Cure Rate Models

Cure rate models can be estimated by using the same survival data described in the
previous section. However, in producing survival curves, we usually assume that
the cumulative survival probability S(f) goes to zero as ¢ approaches infinity. In cure
rate models, we assume that some fraction of the patient population afflicted with a
particular disease is actually cured, will not die, and will not experience a recur-
rence. This proportion is called the cure fraction or cure rate. With a Kaplan—Meier
curve, a cure rate would show up as a nonzero asymptote to the curve. By that we
mean that the survival probability curve will flatten out at a value p equal to the
cure rate.

Berkson and Gage (1952) first discussed a mixture model that is the most popu-
lar and easy to understand cure rate model. It assumes that a certain fraction p of the
entire population will be cured by the treatment and the remaining 1 — p fraction of
the population will not be cured. Equation 15.2 defines the mixture model for the
population survivor function S(¢) by using p and 1 — p:

SO =p+1-p)S*Q®) (15.2)

Figure 15.1 shows a mixture survival curve with §*(¢) representing an exponen-
tial survival curve with rate 1 event per year and p, the cure proportion, equal to 0.2.
for any ¢ > 0, where p is the cure fraction and S*(¢) is the survival function for the
uncured subpopulation.

The survivor function S*(¢) can be estimated by parametric or nonparametric
methods. Maller and Zhou (1996) provide extensive treatment of cure models using
the frequentist approach. Ibrahim, Chen, and Sinha (2001) cover cure models from
the Bayesian perspective and provide many additional references. We will not pur-
sue this topic further.
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Figure 15.1. Exponential cure rate model with cure rate p = 0.2.
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Although the concept of cure rates goes back to the 1950s, much of the research
activity on this topic took place in the 1990s. Good algorithms for mixtures, such as
the EM algorithm or a Markov chain Monte Carlo algorithm, became popular as re-
cently as the 1980s and 1990s. Available at no charge, the software package Win-
BUGS performs Gibbs sampling algorithms for Markov chain Monte Carlo appli-
cations. (See Chapter 16.)

15.3 COMPARING TWO OR MORE SURVIVAL CURVES—THE LOG
RANK TEST

To compare two survival curves in a parametric family of distributions such as the
negative exponential or the Weibull, we need to test only the hypothesis that the pa-
rameters are equal versus the alternative hypothesis that the parameters differ in
some way. We will not go into the details of such parametric comparisons. Howev-
er, nonparametric procedures look for differences in survival distributions based on
the information in the Kaplan—-Meier curves. In this section, we consider specific
nonparametric tests for two or more survival curves.

The log rank test, a nonparametric procedure for comparing two or more sur-
vival functions, is a test of the null hypothesis that all the survival functions are the
same, versus the alternative that at least one survival function differs from the rest.
The idea is to compare the observed frequency of deaths or failures for each curve
in various time intervals with what would be expected under the null hypothesis
that all the curves are the same. Details can be found in the original paper [see Man-
tel (1966)] or in Lee (1992), pages 109-112.

Now we will describe a simple chi-square test that is very similar to the log rank
test. For the chi-square test, we simply let O, be the observed number of deaths in
group 1, O, the observed number in group 2, O; the observed number in group 3,
and so on until all the groups have been enumerated.

A chi-square statistic is determined by computing the expected numbers £, E,,
E5, etc., of deaths in each group. For this calculation to hold, all the groups need
to come from the same population of survival times. Then, similar to other chi-
square calculations (refer to Chapter 11), the statistic x> = (O, — E\)?/E, + (O, —
E,)/E, + ...+ (0, — E)*E, has approximately a chi-square distribution with k —
1 degrees of freedom when the null hypothesis is true. We will go through an ex-
ample in detail in which k& = 2, and the test statistic is then chi-square with 1 de-
gree of freedom under the null hypothesis.

This simple calculation is taken from Lee (1992), Example 5.2, page 107. Sup-
pose that ten female breast cancer patients are randomized to receive either cyclic
administration of cyclophosphamide, methatrexate, and fluorouracil (CMF), or no
additional treatment after a radical mastectomy. Five patients are randomized to the
CMF treatment arm and five to the control arm.

We are interested in knowing whether time to relapse (time in remission) is
lengthened by the treatment versus the null hypothesis that the treatment makes no
difference. The results at the end of the trial are as follows: CMF patient remission
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times in months are 23, 16+, 18+, 20+, and 24+; the control group remission times
are 15, 18, 19, 19, and 20. The plus sign (+) indicates that the data were right-cen-
sored, e.g., 16+ means right-censored at 16 months. The events without plus signs
refer to remission, 1 case for the CMF group and all 5 cases for control group.

Table 15.5 shows the remission times (7), the number of remissions at remission
time (d,), the number at risk in group 1 (»,,), the number at risk in group 2 (n,,), ex-
pected frequency in group 1 (£,), and expected frequency in group 2 (E,). We will
use these terms to compute a chi-square statistic. In order to complete the table, we
list the remission times for the pooled data in ascending order. The remission times
ranged from 15 to 23 months.

At each time ¢, the contribution to £, is dn,/(n,, + n,,) and, similarly, for £, it is
dn,y/(ny,+ ny). We know that the observed number of remissions is 1 for group 1 and
5 for group 2. As we see from the first column in the table, the remission times are at
times 15, 18, 19, 20, and 23 with two remissions at 19. As described previously, the
events without the plus signs are the cases in which the patients relapsed and the time
is the time in remission. For the CMF group we saw that the only such event was at
23 months for one patient. For the control group we note that five such events oc-
curred at times 15, 18, 19, 19, and 20. So x> = (0, — E|\)Y/E, + (0, — E;))*/E, = (1 —
3.75)%/4.75 + (5 —2.25)?/2.25 = 1.592 + 3.361 = 4.953. From the chi-square distribu-
tion with 1 degree of freedom, we see that this result is statistically significant at the
0.05 level (0.05 > p > 0.01). Note that with 1 degree of freedom the critical value for
p=0.051s 3.841 and for p = 0.01 it is 6.635. Since 4.953 lies between these values
we can conclude that the p-value is between 0.01 and 0.05. Thus, we may conclude
that there are significantly shorter remission times in the control group.

Now let’s consider an example from the treatment of prostate cancer. A proce-
dure called cryoablation is used to remove tumors from the prostate gland. Re-
searchers assigned each patient to one of three risk groups (i.e., risk of recurrence)
based on measures of severity of the disease prior to the procedure. Then, the re-
searchers followed the patients for up to eight years.

The three categories of risk were designated as low, moderate, and high. Ka-

TABLE 15.5. Computation of Expected Numbers for Chi-square Test

Number Number
Remissions at Risk at Risk Expected Expected
Remission  at Remission  in Group 1 in Group 2 Frequency Frequency
Time, Time, (CMF), (Control), in Group 1, in Group 2,
T d, nyy Aoy E, E,
15 1 5 5 0.5 0.5
18 1 4 4 0.5 0.5
19 2 3 3 1.0 1.0
20 1 3 1 0.75 0.25
23 1 2 0 1.0 0

Total — — — 3.75 2.25
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Figure 15.2. Cryoablation biochemical-free survival PSA > 1 criterion.

plan—Meier survival curves were generated for each risk group; the log rank test
was used to compare these survival curves. Failure was defined as having a
prostate-specific antigen lab test result above 1.0 ng/mL. Figures 15.2, 15.3, and
15.4 present the Kaplan—Meier curves.

The curves are very similar. However, the total sample size was only 561, with
94 patients in the low risk group, 178 in the medium risk group, and 289 in the
high-risk group. The p-value for the log rank test was 0.2597, indicating that the
curves were not statistically significantly different.
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Figure 15.4. Cryoablation biochemical-free survival PSA > 1 criterion.

With this final example, we conclude Chapter 15. You have seen that analyses of
survival times yield much useful information regarding the survival of patients and
estimation of cure rates. In the next chapter, we will identify computer software
programs that can be used for survival analyses. Chapter 16 also will present a vari-
ety of software packages that are applicable to many of the statistical techniques
covered in this text.

15.4 EXERCISES

15.1 Give definitions of the following terms in your own words and indicate
when it is appropriate to use each of them.

. Life tables

. The Kaplan—Meier curve

. The negative exponential survival distribution

. The Weibull distribution

. Cure rate models

. Log rank test

- 0 0 O

15.2 For a negative exponential survival function S(¢), recall that S(¢) = exp(Af),
where A is the rate parameter or hazard rate function. Consider the condi-
tional probability that the survival time is T > t,, given that we know T > 1,
where ¢, < t,. Denote by S(#,]¢;) the conditional probability of survival be-
yond £,, given that the patient survives beyond ¢#,, i.e., P[T > t,|T > t,]. Show
that S(#,)t,) = exp[A(#, — #;)]. The term exp[A(t, — #;)] is called the lack of
memory property of the negative exponential lifetime model because the
survival at time ¢, has the same distribution as the survival at time 0; if =1,
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— t,, the probability of surviving 7 units of time is the same at 0 as it is at 7,
namely exp(A7). The probability of surviving depends only on 7and not on
the time #, that we are conditioning on.

If the survival function S(¢) = 1 — #/b for 0 = ¢ = b for a fixed positive con-
stant b, calculate the hazard function A4(f) for 0 = ¢ =< b. Recall that F(¢) = 1
— 8(#) and f(¢) is the derivative of F with respect to . By definition, A(f) =
f(®)/S(¢). What is the lowest value for the hazard rate? Is there a highest val-
ue for the hazard rate? (Hint: Choose M large. If there exists a ¢ < b such that
h(c) is greater than M and M is arbitrary, then there is no highest value for
the hazard function.)

If the survival times in months for one group are {7.5, 12, 16, 33%, 55, 61}
and {31, 60, 65, 76", 80", 92} for the second group, apply the chi-square test
to see if the survival curves are significantly different from one another. Re-
call that the notation of a plus as a superscript on the number indicates cen-
soring at the denoted time, namely at 33 months for the case in group 1 and
at 76 and 80 months for the cases in group 2. Test at the 0.01 significance
level. Does the result seem obvious just from looking at the data?

Suppose the survival times (in months since transplant) for eight patients
who received bone marrow transplants are 3.0, 4.5, 6.0, 11.0, 18.5, 20.0,
28.0, and 36.0. Assume no censoring.

a. What is the median survival time?

b. What is the mean survival time?

c. Using 5 months as the interval, construct a life table for these data.

Using the data in Exercise 15.5,

a. Calculate a Kaplan—Meier curve for the survival distribution.

b. Fit a negative exponential survival model to the data.

c. Compare the fitted exponential to the Kaplan—-Meier curve at the eight
event times.

d. Based on the comparison in ¢, would you say the exponential is a good
fit?

Again, we use the data from Exercise 15.5, but we assume that 6.0, 18.5, and

28 are censor times.

a. Estimate the median survival time.

b. Why would an estimate of the mean survival time based on averaging all
the times be inappropriate?

c. Using 5 months as an interval, construct a life table for the data.

Using the data in Exercise 15.7, construct a Kaplan—Meier estimate of the
survival distribution.
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15.9 Again using the data in Exercise 15.7, fit a negative exponential model.

Compare it to the Kaplan—Meier curve at the event times 3, 4.5, 11.0, 20.0,
and 36.0 months, and decide whether or not the negative exponential pro-
vides a good fit.

15.10 Using a chi-square test, formally test the goodness of fit of the negative ex-

ponential distribution obtained in Exercise 15.9. Test at the 0.05 level of sig-
nificance.

15.11 Listed below in units of months are the survival and censor times (censoring

denoted by a superscripted plus sign) for six males and six females.

Males: 1, 3,4%,9, 11, 17

Females: 1,3%,6,9, 10, 11*

a. Calculate a Kaplan—Meier curve for the males.

b. Calculate a Kaplan—Meier curve for the females.

c. Apply a chi-square test to determine if the two survival curves differ
from one another.

15.12 For the data in Exercise 15.11:

a. Compute the mean survival time for males using all the observations (in-
cluding the censoring times).

b. Repeat part a for the females.

c. Compute the mean survival times for males and females, respectively,
using only the uncensored times.

d. Which estimate makes more sense if censoring can be considered to oc-
cur at random?
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CHAPTER 16

Software Packages for
Statistical Analysis

Teaching data analysis is not easy, and the time allowed is always

far from sufficient.

—John W. Tukey, The Future of Data Analysis,
Annals of Mathematical Statistics 33, 1, 11, 1962

16.1 GENERAL-PURPOSE PACKAGES

Software packages for statistical analysis have evolved over the past three decades
from those designed primarily for mainframe applications to software directed to-
ward personal computer users. Examples of statistical packages include BMDP,
SPSS, SAS, Splus, Minitab, and a wide variety of other programs. Wilfred Dixon
and his colleagues in statistics at the University of California, Los Angeles, pro-
duced one of the earliest successful statistical packages, known as BMDP. This
package for mainframe computers was so successful in the 1960s and 1970s that
eventually BMDP Inc. was founded to handle the production and sale of the soft-
ware.

BMDP handled summary statistics, hypothesis testing and confidence intervals,
regression, and analysis of variance. The demand for additional statistical routines
from biostatisticians led Dixon and his colleagues at UCLA to develop multivariate
routines for cluster analysis and classification, as well as survival analysis and time
series methods.

However, in the 1980s and 1990s microcomputers and, subsequently, personal
computers supplanted mainframes. Because BMDP was slow to make adjustments,
the business eventually failed. SPSS Inc. bought the software package for distribu-
tion and development in the United States. BMDP’s branch in Cork, Ireland eventu-
ally developed into an offshoot company, Statistical Solutions, which still has a li-
cense to market and distribute BMDP software in Europe.

Statistical Packages for the Social Sciences (SPSS) was originally a software
package developed in the late 1960s at Stanford University to help solve problems

356 Introductory Biostatistics for the Health Sciences, by Michael R. Chernick
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in the social sciences. Norman H. Nie, C. Hadlai (Tex) Hull, Dale Bent, and three
Stanford University graduate students were the originators. SPSS incorporated in
1975 and established headquarters in Chicago, where the company, headed by Nie
as Chairman of the Board, remains today.

A very popular package in the social sciences, SPSS provides standard regres-
sion and analysis of variance programs. In addition, it emphasizes multivariate
methods that are important to social scientists, e.g., factor analysis, cluster analysis,
classification, time series methods, and categorical data analysis. Initially, SPSS
suffered because it valued marketing more highly than good numerical algorithms,
whereas BMDP excelled at the use of good, stable numerical methods. In recent
years SPSS Inc. has improved its algorithms.

SPSS has grown into a large corporation that acquired several major software
packages during the period 1994-1999. For example, SPSS bought the rights to
BMDP in the United States and bought another good statistical package, SYSTAT,
that was developed by Leland Wilkinson. The firm has developed data mining soft-
ware products in addition to the standard array of statistical tools. As a result of its
acquisitions and software enhancements, the company is now in competition with
other major statistical software and data analysis vendors such as SAS. To learn
about SPSS and all its products, including SYSTAT, go to their website:
WWW.SPSS.com.

Academics at North Carolina State University developed the Statistical Analysis
System, (SAS) in the late 1960s. Like BMDP, SAS was a software tool devised to
handle statistical research problems at a university. SAS became so successful that
in 1976 NCSU faculty member James Goodnight, in an agreement with the univer-
sity, gained the commercial rights to the software and formed the company that is
now called the SAS Institute Inc. SAS software has become the most successful sta-
tistical software package of all, due in part to Goodnight’s and the other founders’
ability to anticipate the demands of the marketplace. The SAS Institute has pro-
duced excellent numerical algorithms and has been at the forefront in designing
software with topnotch data management capabilities. Because of it’s capabilities.
SAS is the software of choice for major businesses and the entire pharmaceutical
industry. As the personal computer came along, SAS developed PC SAS with a
user-friendly Windows interface.

SAS software is divided into modules. The statistics module, called STAT, pro-
vides procedures for doing the standard parametric and nonparametric procedures
including analysis of variance, regression, classification and clustering, and sur-
vival analysis. Specialized procedures such as time series analysis and statistical
quality control have their own modules. We demonstrate SAS output in examples in
this text because of SAS’s dominant use in industry. SAS is also a programming
language that enables you to produce statistical analyses to meet your particular
needs and to manipulate your data sets in ways to enhance the analysis.

SAS now invests a lot of its development money in data mining. Their data min-
ing package, Enterprise Miner, is one of the best packages currently available. An-
other advantage of SAS is its capability to transport data files in various formats
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and convert them to SAS data sets without tremendous effort on the part of the user.
To learn the latest information about SAS, you can go to its website: www.sas.com.

S is a statistical language that was developed by AT&T Bell Laboratories in the
1970s and 1980s. It was designed to be an object-oriented language conducive to in-
teractive data analysis and research. It is particularly suited for interactive graphics.

In the mid 1980s, R. Douglas Martin and other faculty members at the Universi-
ty of Washington formed a software company called Statistical Sciences. The com-
pany’s purpose was to create a user-friendly front end for S. The founders called
their software Splus. The package has been tremendously popular at universities
and other research institutions because it provides state-of-the-art statistical tools
with a user-friendly interface so that the user does not have to be knowledgeable
about the S language. The company was later bought by Mathsoft and has now
changed its name to Insightful Corp.

Splus software is known for its interactive capability. It includes the latest devel-
opments in time series, outlier detection, density estimation, nonparametric regres-
sion, and smoothing techniques including LOESS and spline function curve esti-
mates. Insightful Corp. also has developed classification and regression tree
algorithms and a module for group sequential design and analysis. To learn the lat-
est about Splus and other products, go to Insightful’s website: www.insightful.com.

Minitab is another general-purpose statistical package. It was designed to facili-
tate teaching statistical methods by using computers. Established in 1972, Minitab
is used widely in educational applications. The company’s founding statisticians
were experts in statistical quality control methods. Consequently, the company
prides itself on the usefulness and appropriateness of its quality control tools.
Minitab is also a very user-friendly product with good documentation. To learn
more about Minitab, go to their website at www.minitab.com.

Other good general-purpose software packages on the market today include
STATA and NCSS. Their websites, which provide detailed information on their
products, are www.stata.com and www.ncss.com, respectively. NCSS also pro-
duces a fine program for determining statistical power and sample size (both dis-
cussed in Section 16.3.)

For a detailed account of software packages that are useful in biostatistics, refer
to the article “Software” by Arena and Rockette (2001). In addition to providing de-
tailed discussion of the tools, the authors provide a very useful and extensive table
that gives the title of each package, its emphasis relevant to clinical trials, and the
name of the current vendor that sells it (including websites and mailing addresses).
This list is very extensive and includes special-purpose as well as general-purpose
software.

Bayesian and other statistical techniques are benefiting greatly from the Markov
chain Monte Carlo computational algorithms. Refer to Robert and Casella (1999) for
an excellent reference on this subject. Spiegelhalter and his colleagues at the MRC
Biostatistics Unit in Cambridge, England, developed a software tool called BUGS,
which stands for Bayesian inference using Gibbs sampling. Gibbs sampling is a par-
ticular type of Markov chain Monte Carlo algorithm, as is the Metropolis—Hastings
algorithm. BUGS is also used in Bayesian survival analysis methods, as recently de-
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scribed by Ibrahim, Chen, and Sinha (2001). BUGS, with documentation, can be
downloaded at no cost from the Internet (http://www.mrc-bsu.cam.ac.uk/bugs/).

At present, the most commonly used version of BUGS is WinBUGS. This attrac-
tive version is menu-driven for the Windows operating system. WinBUGS is well de-
scribed with many examples in Congdon (2001). Both the Markov chain Monte
Carlo algorithm and the Metropolis—Hastings algorithm can be implemented through
WinBUGS. Diagnostic software for convergence of Markov chains, called CODA
(Convergence Diagnostics and Output Analysis), by Martin Plummer can be down-
loaded at http://www-fis.iarc.fr/coda/. Brian Smith has produced another, more re-
cent package, which is available at http://www.public-health.uiowa.edu/boa/.

16.2 EXACT METHODS

Among the class of nonparametric techniques is a group of methods called permu-
tation, or randomization, methods. The methods have the advantage that condi-
tioned on some aspect of the data at hand, they have a significance level that is ex-
actly the specified level. The conditioning we refer to is conditioning on the
marginal totals in a 2 x 2 table. In a two-sample problem, we condition on observ-
ing the combined observations without regard to which population they came from.

For the parametric techniques that we have studied in this course, achieving the
correct significance level is simply a matter of finding the correct critical value(s) in
a table of the sampling distribution under the null hypothesis. For more complicated
testing situations in which nonparametric methods are used or approximate distrib-
utions are applied, the test may not be exact. For example, many bootstrap testing
procedures provide useful nonparametric tests but they are not exact over the entire
range of distributions that we consider under the null hypothesis. For such hypothe-
sis tests that have a large set of possible distributions for the population being sam-
pled, this exactness property is not obtainable.

We saw that Fisher’s exact test, an alternative to the chi-square test for a 2 x 2
contingency table, is one example of an exact permutation test. Cytel Corp. is one
of the few companies that produce software specializing in exact methods. Cyrus
Mehta, Cytel’s president, began to develop the corporation’s main products,
StatXact and LogXact, in 1987. Cytel provides the most extensive and best algo-
rithms for performing exact probability calculations. The software programs em-
ploy fast algorithms based on network optimization algorithms that were originally
developed for operations research problems. Cytel’s current products are described
on their website at www.cytel.com. The latest version of StatXact includes sample
size and power calculations.

16.3 SAMPLE SIZE DETERMINATION

Originally, none of the general-purpose statistical packages contained software to
help statisticians determine sample size requirements. As you have seen, sample
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size requirements are important for researchers and pharmaceutical and medical de-
vice companies to assess the economic feasibility of a particular study, such as a
phase III clinical trial for establishing the efficacy and safety of a drug.

To fill this void, Janet Elashoff of UCLA and the Cedars Sinai Medical Center
wrote a small-business innovative research proposal to develop such software. The
result was a statistical package called nQuery Advisor. This highly innovative prod-
uct provided useful and correct results for a variety of important sample size esti-
mation problems, a very user-friendly interface, and verbal interpretations for the
resulting tables. The tool was so successful that a company, Statistical Solutions,
decided to market the software. Now in version 4, the product has undergone sever-
al improvements since its introduction.

nQuery Advisor now has several competitors. Some of the competitors that pro-
vide sample size determination include StatXact, UnifyPow, Power and Precision,
and PASS 2000. Version 4 of StatXact introduced sample size determination for ex-
act binomial tests. Version 5, which is much more extensive, includes multinomial
tests and a more user-friendly menu for the sample size options.

The SAS Institute is planning to produce a sample size estimation package and
may buy the rights to UnifyPow. Chernick and Liu (2002) compare these various
packages with respect to the way they determine the power function for the case of
the single proportion test against a hypothesized value.

We list the user manuals for these products in the reference section of this chap-
ter. Each product has its own web site. They are as follows: www.cytel.com for
StatXact, www.ncss.com for PASS 2000, www.statsolusa.com for nQuery Advisor,
www.PowerAnalysis.com for Power and Precision, and www.bio.ri.ccf.org/Unify-
pow/ for UnifyPow.

Other sample size packages are PASS 2000 by NCSS, EaSt by Cytel, and S +
SeqTrial by Insightful. These three packages are designed to handle what are called
group sequential designs. Sequential methods are a special topic in statistics that is
not within the scope of this text.

Group sequential designs allow the sample size to depend on the results of inter-
mediate analyses. We mention them here because the fixed sample size problems that
we have been discussing in the text are special cases of the more general problem of
sample size estimation. The group sequential software can be made to solve fixed
sample size problems by setting the number of interim stages in the design to 1.

16.4 WHY YOU SHOULD AVOID EXCEL

The Microsoft product Excel is a very popular and useful spreadsheet program. Ex-
cel provides random number generators and functions to generate means, standard
deviations, and minima and maxima of a set of numbers in a spreadsheet. It also has
a data analysis toolkit as an add-on option. The toolkit provides many standard sta-
tistical tools, including regression and analysis of variance.

Many universities, particularly business schools, have considered using Excel
for routine statistical analyses and as a tool to teach statistics to undergraduate
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classes. However, statisticians have discovered numerical instabilities in many of
the algorithms. In some versions of Excel, even calculations of means and standard
deviations could be incorrect because of blank rows or columns treated as zero in
value instead of being ignored. The pseudorandom number generators that are used
in Excel are also known to be faulty. Microsoft has not fixed many of the problems
that have been pointed out to them. For all of these reasons, we think it is better to
export Excel data files to other packages such as SAS before doing even routine sta-
tistical analyses.

Academic institutions are tempted to use Excel for statistical analyses. Nowa-
days, PCs are owned and used by the schools themselves as well as most of the
community. Excel is automatically preinstalled in most of the computers sold to
universities and their students. Some universities have site licenses for the distribu-
tion of well-known software products. We recommend that you use Excel for typi-
cal spreadsheet applications and for graphics such as bar charts, pie charts, and scat-
ter plots but not for statistical analyses.
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Postscript

You have now completed the course and if you have studied carefully and learned
as instructed you should now appreciate these ten commandments of statistical in-

ference.*

II.

1.
Iv.

VL
VIL
VIIL
IX.

Thou shalt not hunt statistical significance with a shotgun.

Thou shalt not enter the valley of the methods of inference without an ex-
perimental design.

Thou shalt not make statistical inference in the absence of a model.
Thou shalt honor the assumptions of the model.

Thou shalt not adulterate the model to obtain significant results.
Thou shalt not covet thy colleague’s data.

Thou shalt not bear false witness against the control group.

Thou shalt not worship the 0.05 significance level.

Thou shalt not apply large sample approximations in vain.

Thou shalt not infer causal relationships from statistical significance.

*Michael F. Driscoll, The Ten Commandments of Statistical Inference, The American Mathematical
Monthly, 84, 8, 628, 1977.
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APPENDIX B

Studentized Range Statistic

Upper 5% Points

n

v 2 3 4 5 6 7 8 9 10
1 1797 2698 3282 37.08 4041 43.12 4540 4736  49.07
2 6.08 8.33 9.80 10.88 11.74 12.44 13.03 1354 1399
3 4.50 591 6.82 7.50 8.04 8.48 8.85 9.18 9.46
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74
10 3.15 3.88 4.33 4.65 491 5.12 5.30 5.46 5.60
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 532
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25
15 3.01 3.67 4.08 437 4.59 4.78 4.94 5.08 5.20
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15
17 2.98 3.63 4.02 430 4.52 4.70 4.86 4.99 5.11
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01
24 292 3.53 3.90 4.17 437 4.54 4.68 4.81 4.92
30 2.89 3:49 3.85 4.10 430 4.46 4.60 4.72 4.82
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73
60 2.83 3.40 3.74 3.98 4.16 431 4.44 4.55 4.65

120 2.80 3.36 3.68 3.92 4.10 4.24 436 4.47 4.56
el 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47
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Upper 5% Points (cont.)

n
v 11 12 13 14 15 16 17 18 19 20

1 5059 5196 5320 5433 5536 5632 5722 58.04 5883 59.56
2 1439 1475 15.08 1538 15.65 1591 16.14 1637 16.57 16.77
3 9.72 995 10.15 1035 1053 10.69 10.84 1098 11.11 11.24
4 8.03 821 837 852 8.66 8.79 8.91 9.03 9.13  9.23
5 7.17 732 747  7.60 7.72 7.83 7.93 8.03 8.12 821
6
7
8

6.65 679 692 7.03 7.14 7.24 7.34 7.43 7.51 759

630 643 655  6.66 6.76 6.85 6.94 7.02 7.10  7.17

6.05 6.18 629  6.39 6.48 6.57 6.65 6.73 6.80  6.87

9 587 598 6.09 6.19 6.28 6.36 6.44 6.51 6.58  6.64
10 572 583 593 6.03 6.11 6.19 6.27 6.34 640  6.47

11 5.61 571 581 5.90 5.98 6.06 6.13 6.20 627  6.33
12 5.51 561 571 5.80 5.88 5.95 6.02 6.09 6.15  6.21
13 5.43 553 563 571 5.79 5.86 5.93 5.99 6.05 6.11
14 536 546 555 5.64 5.71 5.79 5.85 5.91 597 6.03
15 5.31 540 549 557 5.65 5.72 5.78 5.85 590 5.96

16 526 535 544 552 5.59 5.66 5.73 5.79 584 590
17 521 531 539 547 5.54 5.61 5.67 5.73 579 584
18 517 527 535 543 5.50 5.57 5.63 5.69 574 579
19 514 523 531 539 5.46 5.53 5.59 5.65 570 5.5
20 5.1 520 528 536 5.43 5.49 5.55 5.61 566 5.71

24 501 510 518 525 5.32 5.38 5.44 5.49 555  5.59
30 492 500 508 515 5.21 5.27 5.33 5.38 543 547
40 482 490 498 5.04 5.11 5.16 5.22 5.27 531 536
60 473 481 488 494 5.00 5.06 5.11 5.15 520 5.24
120 4.64 471 478 484 490 4.95 5.00 5.04 509 5.13

o 455 462 468 474 480 4.85 4.89 4.93 497 501

Source: Handbook of Tables for Probability and Statistics, William H. Beyer (editor). Cleveland, Ohio:
The Chemical Rubber Co., 1966, p. 286.




APPENDIX C

Quantiles of the Wilcoxon
Signed-Rank Test Statistic

n(n+1)
Wooos  Woor  Woozs Woos  Woio Wozo Woso  Woao  Woso 2

n=4 0 0 0 0 I 3 3 4 5 10
5 0 0 0 1 3 4 5 6 7.5 15
6 0 0 1 3 4 6 8 9 10.5 21
7 0 1 3 4 6 9 11 12 14 28
8 1 2 4 6 9 12 14 16 18 36
9 2 4 6 9 11 15 18 20 225 45
10 4 6 9 11 15 19 22 25 27.5 55
11 6 8 11 14 18 23 27 30 33 66
12 8 10 14 18 22 28 32 36 39 78

13 10 13 18 22 27 33 38 42 45.5 91
14 13 16 22 26 32 39 44 48 52.5 105
15 16 20 26 31 37 45 51 55 60 120
16 20 24 30 36 43 51 58 63 68 136
17 24 28 35 42 49 58 65 71 76.5 153
18 28 33 41 48 56 66 73 80 85.5 171
19 33 38 47 54 63 74 82 89 95 190
20 38 44 53 61 70 83 91 98 105 210
21 44 50 59 68 78 91 100 108 115.5 231
22 49 56 67 76 87 100 110 119 126.5 253
23 55 63 74 84 95 110 120 130 138 276
24 62 70 82 92 105 120 131 141 150 300
25 69 77 90 101 114 131 143 153 162.5 325
26 76 85 99 111 125 142 155 165 175.5 351
27 84 94 108 120 135 154 167 178 189 378
28 92 102 117 131 146 166 180 192 203 406
29 101 111 127 141 158 178 193 206 217.5 435
30 110 121 138 152 170 191 207 220 2325 465
31 119 131 148 164 182 205 221 235 248 496
32 129 141 160 176 195 219 236 250 264 528
33 139 152 171 188 208 233 251 266 280.5 561
34 149 163 183 201 222 248 266 282 297.5 595
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nn+1)
2

35 160 175 196 214 236 263 283 299 315 630
36 172 187 209 228 251 279 299 317 333 666
37 184 199 222 242 266 295 316 335 351.5 703
38 196 212 236 257 282 312 334 353 370.5 741
39 208 225 250 272 298 329 352 372 390 780
40 221 239 265 287 314 347 371 391 410 820
41 235 253 280 303 331 365 390 411 430.5 861
42 248 267 295 320 349 384 409 431 451.5 903
43 263 282 311 337 366 403 429 452 473 946
44 277 297 328 354 385 422 450 473 495 990
45 292 313 344 372 403 442 471 495 517.5 1035
46 308 329 362 390 423 463 492 517 540.5 1081
47 324 346 379 408 442 484 514 540 564 1128
48 340 363 397 428 463 505 536 563 588 1176
49 357 381 416 447 483 527 559 587 612.5 1225
50 374 398 435 467 504 550 583 611 637.5 1275

Source: Conover, W. J. (1999). Practical Nonparametric Statistics, 3rd Ed., pp. 545-546. Wiley, New
York.
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APPENDIX E

Table of the Standard
Normal Distribution

Z 0.00 0.01 0.02 003 0.04 005 0.06 0.07  0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 03159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 03643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4350 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 04713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.48064 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
24 04918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

Source: Public domain.
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APPENDIX F

Percentage Points,
Student’s # Distribution

n r 0.90 0.95 0.975 0.99 0.995
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 2.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
(continued)
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F
n 0.90 0.95 0.975 0.99 0.995
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617
0 1.282 1.645 1.960 2.326 2.576

Source: Handbook of Tables for Probability and Statistics, William H. Beyer (editor). Cleveland, Ohio:
The Chemical Rubber Co., 1966, p. 226.
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APPENDIX G

Answers to Selected Exercises

Chapter 1

1.6 Cross-sectional studies are studies on a population at a fixed point in time.
Many surveys are cross-sectional. They are used to measure current thinking or the
opinion at a particular time that interests the investigator. An opinion poll on candi-
dates in an election just before (a day or two) election might be used to predict the
winner. Such a poll taken a few months before the election could be used by a par-
ticular candidate to gauge further campaign strategy.

1.8 a. Clinical trials are studies over time that follow patients to determine the
safety and effectiveness of a particular experimental treatment. In clinical trials, pa-
tients are usually randomized to various treatment groups (at least two). One group
may be given a placebo or an active control treatment for comparison. Blinding is
often done and double-blinding is often preferred.

b. Controlled trials are trials that include randomization and a control group.
Uncontrolled trials are missing either randomization or the control or both.

c. Controls are important to get objective comparison, to avoid bias and/or ad-
just for a “placebo effect.”

d. Blinding is a technique that keeps the patient and often the investigator from
knowing which treatment the patient is getting. It is implemented through random-
ization codes that are used to assign the treatments to the patients but are not known
to the investigator or the patient. At the end of the trial, these codes are used to
match the patients to their treatments for the statistical analysis.

e. Here are some outcomes that are measured in clinical trials:

1. Patient satisfaction with the treatment

2. Patient reported quality of life questions

3. Comparison of glycemic control for diabetic patients between a new treat-
ment and an active control

4. Adverse events occurring during the trial

5. Ability of a diabetes drug to lower cholesterol as well as control glucose
levels

6. Acute success rate for an ablation procedure with an experimental catheter
and procedure compared to a control catheter and standard treatment.
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7. Six-month capture threshold comparison of patients with a pacemaker
with steroid-eluting leads compared to control group patients with a pace-
maker that has a nonsteroid lead

8. Comparison of survival times for AIDS patients getting a new therapy ver-
sus AIDS patients getting standard treatment

Chapter 2

2.9 From Table 2.1, start in the first column and the third row and proceed across
the row to generate the random numbers, going back to the first column on the next
row when a row is completed. Placing a zero and a decimal point in front of the first
digit of the number (we will do this throughout), we get for the first random number
0.69386. This random number picks the row. We multiply 0.69386 by 50, getting
34.693. We will always round up. This will give us integers between 1 and 50. So
we take row 35. Now the next number in the table is used for the column. It is
0.71708. Since there are 8 columns, we multiply 0.71708 by 8 to get 5.7366 and
round up to get 6. Now, the first sample from the table is (35, 6), the value in row 35
column 6. We look this up in Table 2.2 and find the height to be 61 inches.

For the second measurement, we take the next pair of numbers, 0.88608 and
0.67251. After the respective multiplications we have row 45 and column 6. We
compare (45, 6) to our list, which consists only of (35, 6). Since this pair does not
repeat a pair on the list, we accept it. The list is now (35, 6) and (45, 6) and the sam-
ples are, respectively, 61 and 65.

For the third measurement the next pair of random numbers is 0.22512 and
0.00169, giving the pair (12, 1). Since this pair is not on the list, we accept and the
list becomes (35, 6), (45, 6), and (12, 1), with corresponding measurements 61, 65,
and 59.

The next pair is 0.02887 and 0.84072, giving the pair (2, 7). This is accepted
since it does not appear on the list. The resulting measurement is 63.

The next pair is 0.91832 and 0.97489 giving the pair (46, 8). Again, we accept.
The corresponding measurement is 59.

We are half way to the result. The list of pairs is (35, 6), (45, 6), (12, 1), (2, 7),
and (46, 8), corresponding to the sample measurements 61, 65, 59, 63, and 59.

The next pair of random numbers is 0.68381 and 0.61725 (note at this point we
had to move to row 4 column 1). The pair is (35, 5). This again is not on the list and
the corresponding measurement is 66.

The next pair of random numbers is 0.49122 and 0.75836 corresponding to the
pair (25, 7). This is not on the list so we accept it and the corresponding sample
measurement is 55.

The next pair of random numbers is 0.58711 and 0.52551 corresponding to the
pair (8, 5). This pair is again not on our list so we accept it. The sample measure-
ment is 65.

The next pair of random numbers is 0.58711 and 0.43014, corresponding to the
pair (30, 4). This pair is again not on our list so we accept it. The sample measure-
ment is 64.
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The next pair of random numbers is 0.95376 and 0.57402, corresponding to the pair
(48, 5). This pair is again not on our list so we accept it. The sample measurement is 57.

We now have 10 samples. Since we only took 10 out of 400 numbers (50 rows
by 8 columns), our chances of a rejection on any sample was small and we did not
get one.

The resulting 10 pairs are (35, 6), (45, 6), (12, 1), (2,7), (46,8), (35, 5), (25,7), (8,
5), (30, 4) and (48, 5) and the corresponding sample of ten measurements is 61, 65,
59, 63, 59, 66, 55, 65, 64, and 57.

Despite the complicated mechanism we used to generate the sample, this consti-
tutes what we call a simple random sample since each of the 400 samples has prob-
ability 1/400 of being selected first and each of the remaining 399 has probability
1/399 of being selected second, given they weren’t chosen first, etc.

2.11 a. The original sample is 61, 55, 52, 59, 62, 66, 63, 60, 67, and 64. We then
index these samples 1-10. Index 1 corresponds to 61, 2 to 55, 3 to 52, 4 to 59, 5 to
62, 6 to 66, 7 to 63, 8 to 60, 9 to 67, and 10 to 64. We use a table of random num-
bers to pick the index. We will do this by running across row 21 of Table 2.1 to gen-
erate the 10 indices. The random numbers on row 21 are:

22011 71396 95174 43043 68304 36773 83931 43631 50995 68130

This we interpret as 0.22011, 0.71396, 0.95174, 0.43043, 0.68304, 0.36773,
0.83931, 0.43631, 0.50995, and 0.68130. To get the index, we multiply these num-
bers by 10 and round up to the next integer. The resulting indices are, respectively,
3,8,10,5,7,4,9,5, 6,and 7. We see that indices 5 and 7 each repeated once and
indices 1 and 2 did not occur. The corresponding sample is 52, 60, 64, 62, 63, 59,
67, 62, 66, and 63.

b. The name we give to sampling with replacement » times from a sample of
size n is bootstrap sampling. The sample we obtained we call a bootstrap sample.

2.13 a. A population is a complete list of all the subjects you are interested in. For
Exercise 2.9, it consisted of the 400 height measurements for the female clinic pa-
tients. The sample is the chosen subset of the population, often selected at random.
In this case it consisted of a random sample of 10 measurements corresponding to
the female patients in specific rows and columns of the table. The resulting 10 pairs
were (35, 6), (45, 6), (12, 1), (2,7), (46,8), (35, 5), (25,7), (8, 5), (30, 4), and (48, 5)
and the corresponding sample of 10 measurements were 61, 65, 59, 63, 59, 66, 55,
65, 64, and 57.

b. For the bootstrap sampling plan in Exercise 2.11, the population is the same
set of 400 height measurements in Table 2.2. The original sample is a subset of size
10 taken from this population in a systematic fashion, as described in Exercise 2.11.
The bootstrap sample is then obtained by sampling with replacement from this orig-
inal sample of size 10. The resulting bootstrap sample is a sample of size 10 that
may have some of the original sample values repeated one or more times depending
on the result of the random drawing. As shown in our solution, the indices 5 and 7
repeated once each.
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2.14 a. This method of sampling is systematic sampling. It specifically is a peri-
odic method.

b. Because of the cyclic nature of the sampling scheme, there is a danger of bias.
If the data is also cyclic with the same period we could be sampling only the peak
values (or only the trough values). In that case, the sample estimate of the mean
would be biased on the high side if we sampled the peaks and on the low side if we
sampled the troughs.

Chapter 3
3.7 Since the range is from 0.7 to 23.3 and we are to choose 9 intervals, we choose
to divide the data into 9 equal width intervals from 0 to 24.3, each of length 2.7. Data

points at an interval boundary are included in the higher of the two intervals.

Class Interval ~ Measurement Class Frequency Relative Frequency

1 0-2.7 19 0.38
2 2.7-54 17 0.34
3 5.4-8.1 10 0.20
4 8.1-10.8 2 0.04
5 10.8-13.5 0 0.0
6 13.5-16.2 1 0.02
7 16.2-18.9 0 0.0
8 18.9-21.6 0 0.0
9 21.6-24.3 1 0.02
Total — 50 1.0
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Relative Frequency Histogram for Exercise 3.7.

The mean is 4.426 and the median is 3.90.
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3.9 The numbers range from 0.7 to 23.3, so the stem and leaf plot looks as follows:
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3.10 The median is 5. The lower quartile is 4 and the upper quartile is 7. The
smallest value is 2 and the largest 9.

Chapter 4

4.1 Measures of location are statistical estimates that describe the center of a
probability distribution. Some measures are more appropriate than others, depend-
ing on the shape of the distribution.

a. The arithmetic mean is the “center of gravity” for the distribution. It is simply
the sum of the observations divided by the number of observations. It is an appro-
priate measure for symmetric distributions like the normal distribution.

b. The median is the middle value. For an odd number of samples, that is, if n =
2m + 1, an odd number, the median is the m + 1 value when ordered from smallest
to largest. If » = 2m, an even number, then the median is the average of the m and m
+ 1 values ordered from smallest to largest. Approximately half the values are be-
low and half are above the median.

c. The mode is the most frequently occurring value (or values if more than one
value tie for most frequent). For a density function, the mode is the peak in the den-
sity (i.e., the top of the mountain).
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d. A unimodal distribution is one that has a density with only one peak. A bi-
modal distribution is one with a density that has two peaks (not necessarily equal).
Mutimodal distributions have two or more peaks.

e. Skewed distributions are distributions that are not symmetric. A right or posi-
tively skewed distribution has a long trailing tail to the right. A left or negatively
skewed distribution has the distribution concentrated to the right with the longer tail
to the left.

f. The geometric mean for a sample of size # is the nth root of the product of the
observations. The log of the geometric mean is the arithmetic mean of the loga-
rithms. Cosnequently, the geometric mean is appropriate for the lognormal distribu-
tion and distribution with shape similar to the lognormal.

g. The harmonic mean of a sample is the reciprocal of average of the reciprocal
of the observations.

4.9 The first data set is odd since it contains 5 values {8, 7, 3, 5, 3}. Ordering the
data from smallest to largest, we get the sequence 3, 3, 5, 7, 8. The third observation
in this sequence is the median. Hence, the median is 5. The second data set is even
since it contains 6 values {7, 8, 3, 6, 10, 10}. Ordering them from smallest to largest
we get 3, 6,7, 8, 10, 10. In this sequence, the third observation is the one just below
the middle and the fourth is the observation just above. So by the definition of sam-
ple median, the median is the average of these observations (7 + 8)/2 = 7.5.

4.13 a. First the sample mean is calculated as (3 + 3 + 3 + 3 + 3)/5 = 3. Next calcu-
late the squared deviations (3 -3)>=0,(3-3)>=0,(3-3)>=0,(3-3)>=0,and (3
—3)?=0. Add up the terms and divide by n — 1 = 4 to get 0 for $?. The sample stan-
dard deviation is the square root of the answer is V0 = 0. The shortcut formula is

Sx? — nm?

S§?=
n—1

where m is the sample mean and » is the sample size. 3x? =32+32+32+32+32=
45. nm? =5(3)>=45. S0 $? = (45 - 45)/4 = 0.

In the second case, the sample mean is (5 +7 +9 + 11)/4 = 32/4 = 8. Next calcu-
late the squared deviations (5—8)>=9, (7—-8)?>=1,(9-8)?>=1,and (11 - 8)>=09.
Add up the terms and divide by n — 1 = 3 to get 20/3 = 6.67 for $%. The sample stan-
dard deviation is the square root of the answer is V'6.67 = 2.58. The shortcut for-
mula is

Sx? — nm?

Sz
n—1

where m is the sample mean and 7 is the sample size. 3x? =52 + 72 + 92 + 112 =
276. nm? = 4(8) = 256. So 82 = (276 — 256)/3 = 20/3 = 6.67.

In the last example, we have just 2 observations, 33 and 49. The mean is 41.
Next calculate the squared deviations (33 —41)? = 64 and (4 9— 41)> = 64. Add up
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the terms and divide by n — 1 =1 to get 128 for §2. The sample standard deviation is
the square root of the answer, V' 128 = 11.31. The shortcut formula is

§2— Sx? —nm?
n—1

where m is the sample mean and n is the sample size. 3x7 = 332 + 492 = 3490. nm?
=2(41)?=3362. So S? = (3490 — 3362)/1 = 128.

b. For the first sample, all the values were the same. So there is no variation and
the variance is zero.

4.15 In this problem, we use the home run sluggers data to compare some mea-
sures of dispersion. Recall that the data are as follows:

McGwire: 49, 32, 33,39, 22, 42,9, 9, 39, 52, 58, 70, 65, 32

Sosa 4,15, 10, 8, 33, 25, 36, 40, 36, 66, 63, 50

Bonds 16, 25, 24, 19, 33, 25, 34, 46, 37, 33, 42, 40, 37, 34, 49
Griffey 16, 22,22, 27, 45, 40, 17, 49, 56, 56, 48, 40

a. The sample ranges are 70 — 9 = 61 for McGwire, 66 — 4 = 62 for Sosa, 49 — 16
= 33 for Bonds, and 56 — 16 = 40 for Griffey.
b. We use the shortcut formula to calculate the standard deviations. Recall that

Sx? — nm?
§2=——

n-1

For McGwire, the 2x? = (49) + (32)? + (33)? + (39)% + (22)> + (42)*> + (9)*> + (9)*> +
(39)% + (52)> + (58)% + (70)*> + (65)> + (32)> = 2401 + 1024 + 1089 + 1521 + 484 +
1764 + 81 + 81 + 1521 + 2704 + 3364 + 4900 + 4225 + 1024 = 26183, and since m
=(49+32+33+39+22+42+9+9+39+52+58+70+65+32)/14=551/14
= 39.357, nm?* = 14(39.357)> = 21685.786. So S 2 = (26183 — 21685.786)/13 =
345.94 and S =V345.94 = 18.6.

For Sosa, the 2x7 = (4)? + (15)? + (10)? + (8)% + (33)? + (25)* + (36)* + (40)? +
(36)% + (66)> + (63)%> + (50)? = 16 + 225 + 100 + 64 + 1089 + 625 + 1296 + 4356 +
3969 + 2500 = 14240, and since m=(4 + 15+ 10 + 8 + 33 + 25+ 36 + 40 + 36 + 66
+ 63 + 50)/12 = 386/12 = 32.167, nm? = 12(32.167)*> = 12416.333. So S 2 = (14240
—12416.333)/11 =165.79 and S=V'165.79 = 12.9.

For Bonds, the 3x? = (16)? + (25)% + (24)> + (19)> + (33)> + (25)> + (34)> + (46)?
+ (37)? + (33)> + (42)> + (40)2 + (37)%> + (34)*> + (49)> = 256 + 625 + 576 + 361 +
1089 + 625 + 1156 + 2116 + 1369 + 1089 + 1764 + 1600 + 1369 + 1156 + 2401 =
17552, and since m = (16 +25+24+19+33+25+34+46+37+33+42+40+
37 + 34 + 49)/15 = 494/15 = 32.933, nm? = 15(32.933)> = 16269.0667. So S 2 =
(17552 - 16269.0667)/14 =91.64 and S = V91.64 = 9.57.

Finally, for Griffey, the Zx7 = (16)> + (22)% + (22)* + (27)? + (45) + (40)?> +
(17)% + (49)% + (56)> + (56)> + (48)> + (40)> = 256 + 484 + 484 + 729 + 2025 +
1600 + 289 + 2401 + 3136 + 3136 + 2304 + 1600 = 18444, and since m = (16 +
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22 +22+27+45+40+ 17 +49 + 56 + 56 + 48 + 40)/12 = 438/12 = 36.5, nm?
= 12(36.5)> = 15987. So S 2 = (18444 — 15987)/11 = 223.36 and S = V223.36 =
14.95.

c. For McGwire, since m = 39.357, the sum of absolute deviations is |49 —
39.357| + |32 — 39.357| + |33 — 39.357| + |39 — 39.357| + |22 — 39.357| + |42 —
39.357| +19 — 39.357| + 19 — 39.357| + |39 — 39.357| + |52 — 39.357| + |58 — 39.357|
+ |70 — 39.357| + |65 — 39.357| + |32 — 39.357| = 9.643 + 7.357 + 6.357 + 0.357 +
17.357 +2.643 + 30.357 + 30.357 + 0.357 + 12.643 + 18.643 + 30.643 + 25.643 +
7.357 = 169.357. Divide by the sample size n = 14 to get 12.097 for the sample
mean absolute deviation.

Now, for Sosa, since m = 32.167, the sum of absolute deviations is |4 —32.167| +
[15—32.167| + |10 — 32.167| + |8 — 32.167| + |33 — 32.167| + |25 — 32.167| + |36 —
32.167| + |40 — 32.167| + |36 — 32.167| + |66 — 32.167| + |63 — 32.167| + |50 —
32.167| = 28.167 + 17.167 + 22.167 + 24.167 + 0.833 + 7.167 + 3.833 + 7.833 +
3.833 + 33.833 + 30.833 + 17.833 = 197.667. Divide by the sample size n =12 to
get 16.472 for the sample mean absolute deviation.

Now, for Bonds, since m = 32.167, the sum of absolute deviations is |16 —
32.933| + |25 — 32.933| + |24 — 32.933] + |19 — 32.933] + |33 — 32.933| + |25 —
32.933| + |34 — 32.933| + |46 — 32.933] + |37 — 32.933] + 33 — 32.933| + |42 —
32.933] + |40 — 32.933| + |37 — 32.933| + |34 — 32.933| + [49 — 32.933| = 16.933 +
7.933 +8.933 + 13.933 + 0.067 + 7.933 + 1.067 + 13.067 + 4.067 + 0.067 + 9.067
+4.067 + 1.067 + 16.067 = 104.268. Divide by the sample size n = 14 to get 7.448
for the sample mean absolute deviation.

Now, for Griffey, since m = 36.5, the sum of absolute deviations is [16 — 36.5| +
[22 —36.5| + (22 — 36.5| + |27 — 36.5| + |45 — 36.5| + |40 — 36.5| + |17 — 36.5| + |49 —
36.5|+ 156 —36.5| + |56 — 36.5| + |48 —36.5| + |40 — 36.5|=20.5+ 14.5+ 14.5+9.5
+85+35+195+125+19.5+19.5+ 11.5 + 3.5 = 157. Divide by the sample
size n =12 to get 13.083 for the sample mean absolute deviation.

By all measures, we see apparent differences in variability among these players,
even though their home run averages tend to be similar in the range from 32 to 40.
Bonds seems to be the most consistent (i.e., has the smallest variability based on all
three measures). Oddly, this might change when the 2001 season is added in since
he hit a record 73 home runs that year, which is 24 more than his previous high of
49 in the 2000 season.

Chapter 5

5.1 The probability of no females and 4 males is the same as getting 4 heads in a
row tossing a fair coin or (1/2)* = 1/16 = 0.0625. To get one female we could have
the sequence FMMM, which has probability 1/16 also, but there are C§=4!/(1! 3!)
=4 ways of arranging 1 female and 3 males. These 4 mutually exclusive cases each
have probability 1/16. taking the sum the probability is 4/16 = 1/4 = 0.250 for 1 fe-
male. For 2 females and 2 males there are C4 = 4!/(2! 2!) = 6 ways of getting 2
males and 2 females. So the probability is 6/16 = 3/8 = 0.375. For 3 females, we
again have 4 ways of getting 3 females and 1 male, so the probability is 0.250 for 3
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females. Finally, the probability of getting all 4 females is the same as the probabil-
ity of 0 heads when tossing a fair coin, or 1/16 = 0.0625.

5.5 Each of the six faces of a balanced die has the same chance as any other. So
the probability is 1/6 for a single dot, 1/6 for two dots, 1/6 for three dots, 1/6 for
four dots, 1/6 for five dots and 1/6 for the face with six dots. These probabilities
also represent the expected proportion of occurrences for each of these respective
faces in 1000 rolls. The expected number of occurrence is simply np, where 7 is the
number of rolls and p is the probability of occurrence on an individual roll. Since in
this example » = 1000 and p = 1/6, the expected numberis 166.67 for each of the six
faces.

5.11 a. This is the number of combinations of seven objects chosen four at a
time: C(7,4)=7!/(4!31)=7 x 6 x 5/(3 x 2) = 35.

b. This is the number of combinations of six objects chosen four at a time: C(6,
4)=6!/(4121)=6 x 5/2=15.

c. This is the number of combinations of six objects chosen two at a time: C(6,
2)=6!/(2!4!) =6 x 5/2 = 15. This gives the same result as b.

d. This is the number of combinations of five objects chosen two at a time: C(5,
2)=51/(2131) =5 x 4/2=10.

e. 5.11 d is C(5, 2), the number of combinations of five objects chosen two at a
time, whereas 5.9 e is P(5, 2), the number of permutations of five objects chosen
two at a time. The difference between permutations and combinations is that in per-
mutations the order matters, whereas in combinations it does not. So if the five ob-
jects are labeled a, b, ¢, d, and e. There is only one combination for the choice of a
and b but there are two permutations, namely, ab, and ba. This is true for each dis-
tinct pair. So P(5, 2) is 2C(5, 2). In general, C(n, r) = P(n, r)/P(r, r) = P(n, r)/r! Or
P(n, r)y=r! C(n, r). In this case, r=2 and n = 5.

f. 5.11 b is C(6, 4), the number of combinations of six objects chosen four at a
time, whereas 5.9 d is P(6, 4), the number of permutations of six objects chosen
four at a time. From e, we saw that the difference here is the difference between
permutations and combinations. From the general result given in e, we see that C(n,
r)=P(n, r)/P(r,r) = P(n, r)/r! Or P(n,r)=r! C(n, r). In this case, =4 and n = 6. So
P(6,4)=4! C(6,4) =24 C(6, 4).

5.12 Say that the colors are red, blue, green, and yellow, denoted R, B, G, and Y,
respectively. The possible arrangements are the number of permutations 4! =4 x 3
x 2 =24, They are RBGY, RBYG, RGYB, RGBY, RYGB, RYBG, BRGY, BRYG,
BGRY, BGYR, BYRG, BYGR, GRBY, GRYB, GBYR, GBRY, GYRB, GYBR,
YRBG, YRGB, YGRB, YGBR, YBGR, YBRG.

5.14 a. C(4,2)=4!/(2!2!)=4 x 3/2 = 6. This is the number of combinations of 4
objects taken 2 at a time.

b. P(5,3)=5!/2! =5 x4 x 3 =60. This is the number of permutations of 5 ob-
jects taken 3 at a time.
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c. 41=4x3x2=24,
d. P(4 U B)=P(4) + P(B).
e. P(4 N B)=P(A) P(B).

5.20 If X is binomial with parameters # and p, then the expected value is the sum
of the expected value on each Bernoulli trial, but if ¥ = 0 with probability 1 — p and
Y =1 with probability p, then E(Y) = (1 — p)0 + p(1) = p. Now E(X) = np since p is
summed 7 times (n Ys are added together) the

Var(X) = E(X = np)* = Z(k — np)*C(n, k)p*(1 — p)y" * = 2k2C(n, k)p(1 - p)**
= X2knpC(n, K)p(1 — p)** + Zn’p*C(n, k)p"(1 - p)"*

We now use a few simple tricks. First recall for any integer m > 0
2.C(m, k)p"(1 —py"*=1 (1)

when the sum is taken from £ = 0 to k = m. This is because it is the sum of probabil-
ities for all possible outcomes of a binomial random variable with parameters m and
p. We will repeatedly use equation (1). Next, for a binomial random variable X, we
have seen

E(X) = np = 2kC(n, k)p(1 — p)** (2)

We will also exploit equation (2).
Let us consider the third term in the variance formula first:

Sn’p*Cln, k)p(1 — py"* = n’p*2C(n, k)p"(1 - py"* = n’p?

using equation (1).
Now consider the second term in the variance formula:

—22knpC(n, k)p*(1 — p)y'* = 2np2kC(n, k)p"(1 — p)" * = 2n?*p?

using equation (2).
So the variance equation reduces to

Var(X) = 2k2C(n, p (1 — p)"* — 2n?p? + n?p? = Sk2C(n, k)p"(1 — p)** — n?p?
Now we consider the first term. We use an algebraic trick:

SKC(n, p*(1 — p)'* = 2kC(n, )p*(1 — p)"* + k(k — 1)C(n, k)p*(1 — py**
Now by (2) the first term is np. Consider the second term:

k(k— )n!

A

Sk(k— 1)C(n, kpk(1 - py*=">"
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Notice that in the sum the terms £ = 0 and k£ = 1 are both 0, so we can take the
sum from k=2 to n. Let m =n — 2 and j = k— 2. Substituting j and m in the equation
above we get

k(k— 1)n! L nl N
Zkz(n—k)!pk(1 2 "—Zmpkﬂ -pyt

n! N it
"2 g

The sum on the right side of the above equation goes from j=0toj=m =n-2.
By factoring our n(n — 1)p? from the summation we get for the right side,

-2)! . .
nn—1p*2, j!(in_izij)!ﬂ(l -

but this sum equals 1 by equation (1) applied with m = n — 2 > 0. Note equation (1)
holds trivially for n —2 = 0. So m = 0 is also acceptable. So for any » = 2, Var(X) =
np +n(n— Dp? — n?p? = np + n’p? — np?> — n’p?> = np — np?> = np(1 — p) For n = 10 and
p = 1/2, the mean is 5 and the variance is 10(1/2)(1/2) = 5/2 = 2.5. Note that the
proof does not include the case n = 1, a single Bernoulli trial. In that case, we com-
pute the variance directly, namely, Var(X) = E[X — E(X)]? and E(X) = 0(1 — p) +
1(p) =p. So Var(X) = E(X - p)* = (1 - p)(0 - p)* + (p)(1 - p)* = (1 - p)p* + p(1 - p)?
=p(1=p)p +1-p)=p(1—-p)=np(l —p), since n = 1.

Chapter 6

6.7 a. P(Z>2.33)=0.5-P(0<Z<2.33)=0.5-0.4901 =0.0099.

b. P(Z<-258)=P(Z>2.58)=0.5-P(0<Z<2.58)=0.5-0.4951 =0.0049.

c. From the table of the standard normal distribution, we see that we want to
find the probability that Z> 1.65 or Z<-1.65 or p = P(Z <-1.65) + P(Z> 1.65). By
symmetry P(Z <-1.65) = P(Z>1.65). So p = 2P(Z > 1.65). We also know that P(Z
>1.65)=0.5-P(0<Z<1.65).Sop=1-2P(0<Z<1.65). We look up P(0<Z<
1.65) in the table for the normal distribution and find it is 0.4505. Sop =1-10.9010
=0.099.

d. From the table of the standard normal distribution we see that we want to find
the probability that Z > 1.96 or Z <—1.96 or p = P(Z < -1.96) + P(Z > 1.96). By
symmetry P(Z <-1.96) = P(Z> 1.96). So p =2P(Z > 1.96). We also know that P(Z
>1.96)=0.5-P(0<Z<1.96).Sop=1-2P(0<Z<1.96). We look up P(0 <Z<
1.96) in the table for the normal distribution and find it is 0.4750. Sop=1-0.95=
0.05.

e. From the table of the standard normal distribution we see that we want to find
the probability that Z > 2.33 or Z < -2.33 or p = P(Z <-2.33) + P(Z > 2.33). By
symmetry P(Z <-2.33) = P(Z>2.33). So p = 2P(Z > 2.33). We also know that P(Z
>2.33)=05-P(0<Z<233).Sop=1-2P(0<Z<2.33). Welookup P(0<Z<
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2.33) in the table for the normal distribution and find it is 0.4901. So p =1 — 0.9802
=0.0198.

6.9 a. We want P(Z < #) = 0.9920. We know that since the probability is
greater than 0.5 # is greater than 0. So P(Z<#) = 0.5+ P(0 < Z <#)=10.9920. So to
determine # we solve P(0 < Z <#)=0.9920 — 0.5 = 0.4920. We look it up and find
that 0.4920 corresponds to # =2.41.

b. We want P(Z > #) = 0.0005. # is in the upper-right tail of the distribution so
P(Z>#)=0.5—-P(0<Z<#). We find # by solving P(0 < Z <#)=0.5—-0.0005 =
0.4995. Our table only goes to 3.09 and we see that P(0 < Z < 3.09) = 0.4990 <
0.4995. So #>3.09.

c. We want P(Z <#) = 0.0250. This is in the lower tail so # < 0. P(Z <#) = P(Z
>-#)=05-P0<Z<-#).SoP(0<Z<-#)=0.5-0.025=0.475. The table tells
us that # = 1.96. Therefore # = —1.96.

d. We want P(Z <#) = 0.6554. Since the probability is greater than 0.5 we know
#>0.P(Z<#)=0.5+P0<Z<#).S0P(0<Z<#)=0.6554-0.5=0.1554. Solv-
ing for # by table look-up we see that # = 0.40.

e. We want P(Z > #) = 0.0049. Again, we are in the right tail. So # > 0. P(Z > #)
=0.5 - P(0 < Z<#). We must therefore determine # that satisfies P(0 < Z <#)=0.5
—0.0049 = 0.4951. We see that # = 2.58.

6.10 To standard we take the score and subtract the sample mean and then divide
by the sample standard deviation. Call the raw score W and the standardized score
Z. Then since the sample mean is 65 and the sample standard deviation is 7, we set
Z=(W-65)1.
W=40.So Z= (40 — 65)/7 =-25/7=-3.57.
W=50.So0 Z=(50-65)/7=-15/7=-2.14.
W =60. So Z= (60— 65)/7 =-5/7=-0.714.

d. W=70.So0Z=(70-65)/7=5/7=0.714.

e. We want to determine the probability that W > 75. Z = (75 — 65)/7 = 10/7 =
1.43. P(Z>1.43)=0.50 - P(0 <Z<1.43). So P(0 <Z<1.43)=0.5-0.4236 =
0.0764.

o op

6.12 The population has a mean blood glucose level of 99 with a standard devia-
tion of 12. So we normalize by setting Z = (X — 99)/12.

a. P(X>120)=P(Z>21/12) =P(Z>1.75)=05-P(0 < Z<1.75)=0.5 -
0.4599 = 0.0401.

b. P(70 <X <100) = P(-29/12 < Z<1/12) = P(-20/12 < Z<0) + P(0 < Z <
1/12)=P(0<Z<20/12) + P0<Z<1/12)=P(0<Z<1.67) + P(0 <Z<0.08) =
0.4525 4+ 0.0319 = 0.4844.

c. PX<83)=P(Z<-16/12)=P(Z<-133)=P(Z>133)=05-P0<Z<
1.33)=0.5-0.4082 =0, 0918.

d. P(X>110) + P(X<70)=P(Z>11/12) + P(Z<-29/12) =0.5-P(0 < Z <
11/12) + P(Z>29/12)=0.5-P(0<Z<0.92)+0.5-P(0<Z<242)=1-0.3212
—0.4922=1-0.8134=0.1866.
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e. If X is outside two standard deviations of the mean Z is either >2 or <-2. So
we want to know P(Z > 2) + P(Z <-2)=2P(Z>2)=2[05-P(0<Z<2)]=
1.02P(0<Z<2)=1-2(0.4772) = 0.0456.

6.17 a. The mean remaining life for 25-year-old American males is normal with
mean 50 and standard deviation 5. We want the proportion of this population that
will live past 75. So we seek P(X > 50) since a 75 year old has lived 50 years past
25. To cover to a standard normal, we note that if Z is standard normal it has the dis-
tribution of (X — 50)/5. So P(X > 50) = P[(X - 50)/5 > 0] = P(Z > 0) = 0.50.

b. For the age of 85 we want P(X > 60). P(X > 60) = P((X— 50)/5 > (60 — 50)/5)
=P(Z>2)=05-P(0<Z<2)=0.5-0.4772 =0.0228.

c. Weseek P(X>65)=P(Z>15/5)=P(Z>3)=05-P0<Z<3)=0.5-
0.4987 = 0.0013.

d. We want P(X<40)=P(Z<(40-50)/5)=P(Z<-2)=P(Z>2)=0.5-P0<
7Z<2).=0.5-0.4772=0.0228.

Chapter 7

7.2 Since the population distribution is normal, the sample mean also has a nor-
mal distribution. Its mean is also 100 but the standard deviation is 10/\/n, where n
is the sample size. As n increases, the standard error of the mean decreases at a rate
of 1/Vn.

a. In this case, n =4 and so Vz = 2 or the standard deviation is 10/2 = 5.
. In this case, n =9 and so Vn = 3 or the standard deviation is 10/3 = 3.33.
c. In this case, n = 16 and so Vn = 4 or the standard deviation is 10/4 = 2.50.
d. In this case, n =25 and so Vn =5 or the standard deviation is 10/5 = 2.0.
e. In this case, n = 36 and so Vn = 6 or the standard deviation is 10/6 = 1.67.

o

7.4 The population is normal with mean 11.93 and standard deviation 3 . So the
standard error of the mean is 3/Vn. Since n = 9, the standard error of the mean is
3/3=1.0.

a. To find the probability that the sample mean is between 8.93 and 14.93, we
first normalize it. The sample mean has a mean of 11.93 and a standard deviation of
1.SoZ=(W-11.93)/1 and P(8.93 < W<14.93)=P(-3<Z<3)=2P(0<Z<3)=
2 (0.4987)=0.9974.

b. To find the probability that the sample mean is below 7.53, we normalize
first. Z=(W—-11.93)and P(IW <7.53)=P(Z<-44)=P(Z>44)=05-P0<Z<
4.4) <0.5-0.04990 = 0.0001.

c. To find the probability that the sample mean is above 16.43, we normalize
first. Z=(W—-11.93) and P(W>16.43)=P(Z>15)=05-P(0<Z<1.5)<0.5-
0.4332 = 0.0668.

7.5 We repeat the calculations in 7.4 but with a sample size of 36. . So the stan-
dard error of the mean is 3/V/n. Since n = 36, the standard error of the mean is 3/6 =
0.5.
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a. To find the probability that the sample mean is between 8.93 and 14.93, we
first normalize it. The sample mean has a mean of 11.93 and a standard deviation of
1.SoZ=(W-11.93)/0.5=2(W—11.93) and P(8.93 < W <14.93)=P(-6 <Z<0)
=2P(0 <Z<6)>2(0.4990) = 0.9980.

b. To find the probability that the sample mean is below 7.53, we normalize
first. Z=2(W—-11.93)and P(W<7.53)=P(Z<-8.8)=P(Z>8.8)=05-P0<Z
< 8.8) <0.5-0.04990 = 0.0001.

c. To find the probability that the sample mean is above 16.43, we normalize
first. Z=2(W—-11.93) and P(W>16.43)=P(Z>3.0)=05-P(0<Z<3.0)<0.5-
0.4987 =0.0013.

7.7 X is normal with mean 180.18 cm and standard deviation 4.75 cm. Find the
probability that the sample mean is greater than 184.93 cm when

a. The sample size n = 5. The mean for the sampling distribution of the sample
average is 180.18 and it has a standard error of 4.75/\/5 = 4.75/2.24 = 2.12. P(X >
184.93) = P(Z>4.75/212) = P(Z>224)=05-P(0<Z2<224)=0.5-0.4875 =
0.0125.

b. The sample size is 10, the mean for the sampling distribution of the sample
average is 180.18, and it has a standard error of 4.75/\/10 = 4.75/3.16 = 1.50. P(X >
184.93)=P(Z>1.50)=0.5-P(0<Z<1.50)=0.5-0.4332 = 0.0668.

c. The sample size is 20, the mean for the sampling distribution of the sample
average is 180.18 and it has a standard error of 4.75/\/20 = 4.75/4.47 = 1.06. P(X >
184.93)=P(Z>1.06)=0.5 - P(0 < Z<1.06) = 0.5 — 0.3554 = 0.1446.

7.11 a. The observed data have a variance that is the same from one observation
to the next; the sample average has a different distribution with a variance that is
smaller by a factor of 1/n. It has the same mean, and if the samples do not have a
normal distribution the sample mean will by the central limit theorem have a distri-
bution that is closer to the normal than the population distribution.

b. The population standard deviation is the square root of the population vari-
ance. The standard error of the mean is the standard deviation for the sampling dis-
tribution of the sample average. For random samples, it differs from the population
standard deviation by a factor of 1/V/n.

c. The standard error of the mean is used to create a standard normal or a ¢ sta-
tistic for testing a hypothesis about a population mean based on a random sample. It
is also used to construct confidence intervals for means when arandom sample is
available.

d. The population standard deviation should be used to characterize the popula-
tion distribution. It is used when you want to make statements about probabilities
associated with individual outcomes such as the probability that a randomly select-
ed patient will have a measurement between the values 4 and B.

7.13 The normalized statistic has Student’s ¢ distribution with 5 degrees of free-
dom. The normalized statistic = (X — 28)/(2.83/\/6), where X is the sample mean.
We ignore the fact that for our particular sample X=26. We are only interested in the
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proportion of such estimates that would fall below 24 (our particular one did not since
26 > 24). We take 24 for X since the probability that the sample mean falls below 24
is the same with unknown variance as the probability that 7 < (24-28)/(2.83/\V/6) =
—4/1.155 =-3.46. We look up ¢ with 5 degrees of freedom and find that P( <-3.46)
=P(t>3.46)<1-0.99=0.01 since P(t>3.365)1 — P(t<3.365)=1-0.99 =0.01 for
t with 5 degrees of freedom. We use the one-tailed probability.

Chapter 8

8.2 A point estimate is a single value intended to approximate a population para-
meter. An unbiased estimate is an estimate or a function of observed random vari-
ables that has the property that the average of its sampling distribution is equal to
the population parameter, whatever that value might be. Unbiasedness is a desirable
property but the key for an estimator is accuracy. Unbiased estimators with small
variance are desirable but an unbiased estimator with a large variance is not if other
estimates can be found that are more accurate. The mean square error is a measure
of accuracy. It penalizes an estimate for both bias and variance. An estimate with
small mean square error tends to be close to the true parameter value.

8.7 The bootstrap principle states that we can approximate the sampling distribu-
tion of a point estimate by mimicking the random sample we observe to compute the
estimate. The bootstrap estimates are obtained by sampling with replacement from
the observed data. Bootstrap sampling mimics the random sampling of the original
data. The original sample replaces the population and the bootstrap sample replaces
the original sample. The bootstrap estimates are obtained by applying the function of
the observations to the bootstrap sample. The distribution of these bootstrap esti-
mates is used as an approximation to the sampling distribution for the estimate.

8.8 The bootstrap confidence intervals are obtained by generating bootstrap sam-
ples by the Monte Carlo approximation. The histogram of values of the bootstrap
estimates can then be used to generate confidence intervals. One of the simplest of
bootstrap confidence intervals is called Efron’s percentile method. It constructs a
100(1 — a)% confidence interval by taking the lower endpoint to be the 100(a/2)
percentile and the upper endpoint to be the 100(1 — a/2) percentile.

8.10 We need to find C, the 97.5 percentage point from the ¢ distribution with n —
1 degrees of freedom such that Cs/\/n = d. Here d = 1.2 and S = 9.4. So we need to
find the smallest # such that n = C25%/d? = C*(61.36). From the table of Student’s ¢
distribution, we see the results in the following table:

df=n—1 C C2(61.36)
9 2.2622 314.01
29 2.0452 256.66
100 1.984 241.53

200 1.9719 238.59
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From the table, we see that n > 235, since for n =235, C > 1.96 and (1.96)%(61.36) =
235.72. Also, C < 1.9719 for n = 235, so for n = 235, 235.72 < C*(61.36) < 238.59.
Now 239 is clearly large enough.

8.14 Since the mean score is 55 and the standard deviation is 5, we want to find n
so that the half-width of a 99% confidence interval for the population mean has a
half-width d no greater than 0.4. Again, n must satisfy n = C2S%/d? = C%(156.25),
where C is the 99.5 percentile of a ¢ distribution with n — 1 degrees of freedom. We
use the following table:

df=n-1 C C2(156.25)
29 2.7564 1187.14
200 2.6006 1056.74
1000 2.5758 1036.68
1036 2.5758 1036.68

After df = 200, the value of C is close enough to the limiting normal value that we
use the limiting value of 2.5758. We see that we need df = 1036 or n = 1037 to meet
our requirement. For a 95% confidence interval with the same mean and standard
deviation, we would require a smaller » for the same d = 0.4 since the constant C is
smaller—1.96 compared to 2.5758. We reduce the sample size by lowering the lev-
el of confidence. We still require n = C2S?%/d? = C?(156.25) but now since C =
1.96, we have n > 600.25 or n = 601.

8.16 a. We have assumed that the standard deviation is known to be 2.5. A 95%
confidence interval for 36 construction workers would then be [16 — (1.96)
(2.5)/V36, 16 + (1.96)(2.5)/\/36] = [15.1833, 16.8167].

b. Had n been 49, we just replace V36 = 6 by V49 = 7. This gives [16 — (1.96)
(2.5)/7, 16 + (1.96)(2.5)/7] =[15.3, 16.7].

c. Now if n = 64 we replace 7 by 8 = V64 to get [16 — (1.96)(2.5)/8, 16 +
(1.96)(2.5)/8] = [15.3875, 16.6125].

d. As we see from a through ¢ we kept the level the same and we found that the
width continued to decrease as the sample size increased. With each new interval
being contained in the previous one (since the mean and standard deviation did not
change). This just illustrates that the width of the interval, which is a constant divid-
ed by the square root of the sample size, decreases because the square root of the
sample size increases as the sample size increases.

e. The halfwidth of the interval in ¢ is 0.6125 = (1.96)(2.5)/8.

Chapter 9

9.3 H,: The mean w = 11.2 versus the alternative H,: The mean w # 11.2. This is
a two-sided test.

9.5 H,: The mean difference u; — u, = 0 versus the alternative H,: The mean dif-
ference w; — w, # 0.
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9.9 The sample size is 5, the population variance is known to be 5, and the data is
normally distributed. Under the null hypothesis, the mean is 0. We want to find the
critical value C such that P(—C <X < C) = 0.95, where X is the sample mean. Under
the null hypothesis, Z = X/(\/5/\/5) = X since the standard deviation is /5 and the
standard error of the mean is the standard deviation divided by \Vz where the sam-
ple size n is in this case 5. Since Z is standard normal and Z = X from the table, we
see that C = 1.96.

9.10 In this case, the true mean is 1 and the critical value C is 1.96, as determined
in Exercise 9.9. The power of the test is the probability that X > 1.96 or X <-1.96
under the alternative that the mean is 1 instead of 0. Under this alternative, X has a
normal distribution with mean equal to 1 and standard error equal to 1. So under the
alternative a standard normal Z=X-1. P(X>1.96)=P(Z>0.96)=0.5-P(0<Z<
0.96) = 0.5 -0.3315 = 0.1685. Now P(X <-1.96) = P(Z <-2.96) = P(Z > 2.96) =
0.5-P(0<Z<2.96)=0.5-0.4985=0.0015. So the power of the test is 0.1685 +
0.0015=0.17.

9.11 In this case, the true mean is 1.5 and the critical value C is 1.96 as deter-
mined in Exercise 9.9. The power of the test is the probability that X > 1.96 or X <
—1.96 under the alternative that the mean is 1.5 instead of 0. Under this alternative,
X has a normal distribution with mean equal to 1.5 and standard error equal to 1. So
under the alternative a standard normal Z=X-1.5. P(X>1.96) = P(Z> 0.46) =0.5
—P(0<Z<046)=0.5-0.1772 =0.3228. Now P(X <-1.96) = P(Z <3.46) = P(Z
>3.46)=0.5-P(0<Z<3.46) <0.5-0.4990 = 0.001. So the power of the test is ap-
proximately 0.3228 + 0.001 = 0.3238.

9.19 a. n=12, a=0.05 one-tailed to the right: = 1.7939 (df = 11)
b. n=12, a=0.01 one-tailed to the right: t=2.718 (df=11)
. n=19, a=0.05 one-tailed to the left: # =—1.7341 (df = 18)
. n=19, «=0.05 two-tailed: t=-1.7341 and 7 = 1.7341 (df = 18)
n =28, a=0.05 one-tailed to the left: r =—1.7033 (df = 27)
n=41, a=0.05 two-tailed: r =—-1.6839 and 7= 1.6839 (df = 40)
. n=28, a=0.10 two-tailed:  =-2.3646 and t = 2.3646 (df =7)
. n=201, a=0.001 two-tailed:  =-3.3400 and ¢ = 3.3400 (df = 200)

S0a 0 oo O

9.22 A meta-analysis is a procedure for drawing statistical inference based on
combining information from several independent studies. It is often done because
studies are conducted that individually do not have sufficient power to reject a null
hypothesis but several such studies could do so if their information could be pooled
together. This can be done when the same or similar hypotheses are tested and the
subjects are selected and analyzed in similar ways.

9.26 Sensitivity is the probability that the clinical test declares the patient as
having the disease (a positive test result), given that he or she does in fact have the
disease. If p is the sensitivity, 1 — p is the type II error since the null hypothesis is
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the hypothesis that the patient does not have the disease and 1 — p is the conditional
probability of not declaring the patient to have the disease given that he does have
it. Specificity is the probability that a clinical test declares the patient well (a nega-
tive test result), given that he or she does not have the disease. If p is the specificity,
1 — p is the type I error since 1 — p is the conditional probability of declaring the pa-
tient has the disease when he does not.

Chapter 10

102 Z' =W, - W)Wl —WJ)n, + W1 - W,)n,], where W, = (X, + X,)/(n,
+ n,) and X, = 12, the number with peripheral neuropathy out of n, = 35 in the con-
trol group of diabetic patients and X, = 3, out of the 11 patients taking an oral agent
to prevent hyperglycemia, so n, = 11. Z' is approximately standard normal under
the null hypothesis. W, = 15/46 = 0.3261. W, = 12/35 = 0.3429 and W, = 3/11 =
0.2727. So Z' = 0.07/70.3261(0.6739)/35 + 0.2727(0.7273)/11 = 0.07/0.1559 =
0.4490. In this case, the p-value (two-sided) is approximately 2(0.5 — 0.1736) =
0.6528. So we cannot detect a significant difference between these two proportions.

10.6 The number of Latin American patients with edentulism is x = 34. The sample
size is n = 100. The confidence level 1 — a=0.90. The formula for the confidence in-
terval is by Clopper—Pearson [{1 + (100 — 34 + 1)F(0.95:200 — 68 + 2, 68)/34}71,
{1+ (100 —34)/{35F(0.95:68 +2,2(100 —34)}""] = [1/{1 + 67F(0.95:134, 68)/34},
1/{1 + 66/(35F(0.95:70, 132))}]. F(0.95:134, 68) = 1.45 and F(0.95:70, 132) =
1.42. So the interval is [0.259, 0.430]

10.8 The sample proportion p = 171/402 = 0.425. We are testing the hypothesis
that p = 0.39 against the alternative p > 0.39 that the proportion overweight in the
lower social class in Britain is higher than for the general British population. Take Z
=(0.425 - 0.39)/{V(0.39)V(0.61)/V402} = 0.035/0.02433 = 1.439. This is non-
significant. For a one-sided test at the 0.01 significance level, the critical Z = 2.33.

Chapter 11
11.3
Normal Glycemic Abnormal
Control Glycemic Control Total
Treated Patients 120 = 0.60(200) 80 = 0.40(200) 200
Control Group Patients 30 =0.15(200) 170 = 0.85(200) 200
Total 150 250 400

Yes if the treatment was ineffective we would see independence in the 2 x 2 table
and approximatelyonly approximately 37.5% or 75 students would have normal
control in each group. We would expect 37.5% or about 75 to be normal on one test
and the same 75 on the other. So the expected table would be as follows:
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Normal Glycemic Abnormal
Control Glycemic Control Total
Treated Patients 75 =0.375(200) 125 =10.625(200) 200
Control Group Patients 75 =10.375(200) 125 =0.625(200) 200
Total 150 250 400

(12075 (80125 (30757 (1701257
75 125 75 125
=27+16.2+27+16.2=86.4.

Chi-square =

Since we are looking at a chi-square statistic with 1 degree of freedom, we
should clearly reject independence in favor of the conclusion that the treatment is
effective.

11.4 We recall that the chi-square test applies to testing independence between
two groups. The expected frequencies are the row total times the column total di-
vided by the total sample size. So in the survey, the participants’ health as self-re-
ported versus having smoked 100 or more cigarettes or not in their lifetime should
have about the same distribution in each column. So in the first row, for example, £
= 632(369)/1489 = 156.62 for the participants who smoked 100 or more cigarettes
and £ = 857(369)/1489 = 212.38 for those that smoked less than 100 cigarettes.
Continuing in this way the table looks as follows:

Smoked 100 Did Not Smoke 100
or More Cigarettes, or More Cigarettes,
Health Status Observed (Expected) Observed (Expected)
Excellent 142 (156.62) 227 (212.38)
Very good/ good 368 (358.81) 475 (485.19)
Fair/poor 122 (117.57) 155 (159.43)
Total 632 857

Summing (O — E)>/E we get 1.36 + 1.01 + 0.026 + 0.214 + 0.167 + 0.123 = 2.9.
Since this table has 3 rows and 2 columns, the degrees of freedom for the chi-square
is (R — 1)(C — 1) =2(1) = 2. Checking the 5% critical value in the chi-square table,
we see that C = 5.991, and since 2.9 < 5.991, we cannot reject the null hypothesis
that the distribution of health status for is the same for those that smoked 100 or
more cigarettes compared with those that did not smoke 100 or more cigarettes. Al-
though it may be surprising that the distributions are so similar, it only indicates that
they perceive their health similarly. Their actual health status by other measures
could be considerably different.

11.7 The approach is the same as in 11.4 except that R =2 and C = 2. So the chi-
square statistic will have only 1 degree of freedom. First we must construct the table
as follows:
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Hypoglycemic, Not Hypoglycemic,

Observed Observed Total
Elevated Diastolic BP 370 = 37% of 1000 500 = 50% 0f 1000
Diastolic BP Not Elevated
Total 450 = 45% of 1000 1000

This is what we are given for the table. We can fill in the remaining cells by sub-
traction since we know the totals for the first row, the first column, and the grand
total:

Hypoglycemic, = Not Hypoglycemic,

Observed Observed Total
Elevated Diastolic BP 370 = 37% of 1000 130=500-370 500 = 50% of 1000
Diastolic BP Not Elevated 80=450-370 420 =500 - 80 500 = 1000 — 500
Total 450 =45% of 1000 550 = 1000 — 450 1000

Now we compute the expected numbers and compute the chi-square statistic:

Hypoglycemic, Not Hypoglycemic,
Observed (Expected) Observed (Expected) Total
Elevated Diastolic BP 370 (225) 130 (275) 500
Diastolic BP Not Elevated 80 (225) 420 (275) 500
Total 450 550 1000

Inspection of the table shows a very poor fit. Computing chi-square we have
(145)%/225 + (145)%/275 + (145)%/225 + (145)%/275 = 93.44 + 76.45 + 93.44 + 76.45
=339.79. The critical value at the 1% level for a chi-square with 1 degree of free-
dom is C = 6.635. So clearly we reject the null hypothesis. There is a strong rela-
tionship between elevated diastolic blood pressure and hypoglycemia for this popu-
lation.

Chapter 12

12.3 We assume that X and Y have a bivariate normal distribution. Then the re-
gression E(Y]X) is linear. Then the product moment correlation has an interpreta-
tion as a parameter of the bivariate normal distribution that represents the strength
of the linear relationship. Even if X and Y do not have the bivariate normal distri-
bution, if we can assume that ¥ = o + BX + &, where ¢ is a random variance with
mean 0 and variance o independent of X, then the sample product moment cor-
relation is still a measure of the strength of the linear relationship between X and
Y.

12.7 The scatter plot and the regression line are given in the following figure:
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r=V0.4267 = 0.6532. Recall that [b — T,_,»,SE(b), b + T,_,»SE(D)] where is the
100(1 — a/2) percentile for Student’s ¢ distribution with n — 2 degrees of freedom.
This interval is a 100(1 — a)% confidence interval for 8. Here we require « to be
0.05. So T,_,» = 1.679 since the degrees of freedom equals 46. To get SE(b) re-
call that SSE = 3(y —1)?, S,.="VSSE/n—2, and SE(b) = S, ,/V2(x—X). Now SSE
= 1516.30, so SSE/(n —2) = 1516.30/46 = 32.96. So S,,, = 5.7413 and VI(x - X)2
= 114.4595. So SE(b) = 5.7413/114.4595 = 0.05016. Hence the confidence inter-
val is [b — T\_onSE(D), b + T,_»SE(b)] = [0.2935 — 1.679(0.05016), 0.2935 +
1.679(0.05016)] = [0.2093, 0.3777]. Recall that testing the significance of a linear
relationship is the same as testing that the slope parameter is zero, which in turn
is equivalent to testing whether the correlation 7 is zero. Recall the ¢ test as fol-
lows:

tdf:

where df = n — 2 and » = number of pairs. Here n = 48 and

G0En

n

TNV - XY - V)N

XY

r =0.6532

So = 0.6532V46/\V/1 — 0.4267 = 4.4302/0.75717 = 5.851 Comparing this to a ¢
with 46 degrees of freedom we find the critical T at the 5% level (two-sided) is
1.679, Since 5.475 is larger than 1.679, we reject the null hypothesis.
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12.9 The scatter plot and the regression line are given in the following figure:
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Sleeping Time versus Dosage.

b. y=0.4954x + 3.3761

c. Recall that [b — T,_,»,SE(b), b + T\_,»SE(b)] where is the 100(1 — «/2) per-
centile for Student’s ¢ distribution with n — 2 degrees of freedom. This interval is a
100(1 — a)% confidence interval for 8. Here we require « to be 0.05. So 7\_,, =
2.3646 since the degrees of freedom equals 7. To get SE(b) recall that SSE = 3(y —Y)?,
S,,=VSSE/n—2,and SE(b) =S, ./ 2(x—X)>. Now SSE = 12.49541, s0 SSE/(n —2)
=12.48541/7 = 1.78363. So S, , = 1.33553 and VI(x — X)2 = 14.7648. So SE(b) =
1.33553/14.7648 = 0.09045. Hence the confidence interval is [b — T_,»SE(b), b +
T\_onSE(b)] = [0.4954 — 2.3646(0.09045), 0.4954 + 2.3646(0.09045)] = [0.2815,
0.7093].

d. Recall that testing the significance of a linear relationship is the same as test-
ing that the slope parameter is zero, which in turn is equivalent to testing whether
the correlation r is zero. Recall the ¢ test as follows:

r

where df = n — 2 and n = number of pairs. Here n = 9 and r = XY —
CXCY/nVIEX? — X n[EY2 — QY)¥n] = {780 — (84)(72)/9}/{\V/1002 —
(84)2/9V/642 — (72)2/9} = 108/{\/218V/66} = 108/119.95 = 0.9004. So ¢ =
0.9004\/7/\/1 = 0.8107 = 5.475. Comparing this to a t with 7 degrees of freedom,
we find the critical 7T at the 5% level (two-sided) is 2.3646. Since 5.475 is larger
than 2.3646, we reject the null hypothesis.

e. y=0.4954(12) +3.3761 = 9.3209.
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12.17 The sample multiple correlation coefficient R? in a multiple regression
problem represents the percentage of the variation in Y that is explained by the pre-
dictor variables through the linear regression equation. A value of 1 indicates a per-
fect linear fit to the data. A value close to 1 indicates a good fit.

12.18 The drop in R? from 0.75 to 0.71 indicates that the addition of the fifth vari-
able only explains an additional 4% of the variance in Y. This may not be explaining
enough of the variation to include this variable in the model. Depending on the sam-
ple size this may or may not be statistically significant

12.21 Stepwise regression is a method for added and deleting variables in a step-
wise fashion based on which variable in the equation is weakest and which from the
list of possible entrants is strongest based on criteria such as “F to enter” and “F to
exit.” It is used to help pick a good subset of the variables for inclusion in the model.

12.23 An example of a logistic regression problem would be the military triage
problem. In the case where a soldier is wounded and is in shock, the chances of his
survival depends on the severity of his injury, which can be determined by several
measurements including blood pressure. The army may in combat be faced with too
many severely wounded soldiers to be able to treat all of them. When having to
choose which patients to treat, the army wants to know the chance of survival. A lo-
gistic regression equation can predict the chance of survival of a patient based on
vital signs. The equation can be developed based on historical data for shock trauma
patients. In logistic regression, the outcome variable Y is binary. The patient sur-
vives or dies. A logit transformation is applied to the response before creating a lin-
ear relationship with the predictors. Ordinary least squares is no longer available as
a simple analytic method for obtaining the regression parameters. The predictor
variables can be continuous or discrete as in an ordinary multiple regression equa-
tion. Because the outcome variable is binary, its expected value is a proportion that
represents the probability of the outcome associated with the value 1.

Chapter 13

13.1 Complete the following ANOVA table:

Source of Variation =~ Sum of Squares  Degrees of Freedom  Mean Square ~ F Ratio

Between 300
Within 550 15
Total 21

Source of Variation =~ Sum of Squares  Degrees of Freedom  Mean Square  F Ratio

Between 300 6 50 1.364
Within 550 15 36.67 —
Total 850 21 — —
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13.3 Since we are looking at more than one pair of mean differences, there are
multiple hypothesis tests, each having its own type I error. We want to control si-
multaneously the type I errors that we could make. Tukey’s method guarantees that
the probability of making a type I error on any of the tests is controlled to be less
than a. A simple a-level 7 test on two or more mean differences would not provide
such a control.

13.11 We construct an ANOVA table based on the data in the table below:

Machine Liquid Weight of Cans in Ounces

Machine A Machine B Machine C Machine D Total

Value (SS Term) Value (SS Term) Value (SS Term) Value (SS Term)  (SS)

12.05 (0.000144) 11.98 (0.0016) 12.04 (0.000784) 12.00 (0.0004)
12.07 (0.001024)  12.05 (0.0009) 12.03 (0.000324) 11.97 (0.0001)
12.04 (0.000004)  12.06 (0.0016) 12.03 (0.000324) 11.98 (0.0000)
12.04 (0.000004)  12.02 (0.0000) 12.00 (0.000144) 11.99 (0.0001)
11.99 (0.002304)  11.99 (0.0009) 11.96 (0.002704) 11.96 (0.0004)
Means 12.038 (0.00348) 12.02 (0.005)  12.012 (0.00428) 11.98 (0.0010) (0.01376)

From above, the within-group sum of squares is 0.01376. The grand mean is
12.0125. So the between-group sum of squares is 5{(12.038 — 12.0125)? + (12.02 —
12.0125)> + (12.012 — 12.0125)> + (11.98 — 12.0125)?} = 5(0.00065025 +
0.00005625 + 0.00000025 + 0.00105625) = 5(0.001763) = 0.008815.

Source of Sum of Degrees of
Variation Squares freedom (df) Mean Square F ratio
Between  0.008815 3 MS, =0.008815/3 F=0.00293833/0.00086
=0.00293833 =342
Within 0.01376 16 MS,,=0.01376/16 —
= 0.00086
Total 0.022575 19 — —

The result is significant at the 5% level since the critical fwith 3 and 16 degrees of
freedom is 3.24. So Tukey’s test is appropriate. Recall that HSD = g(«, k, N — k)
V' MSy/n where n is the number of observations per group, k is the number of
groups, N = kn is the total sample size, and g(a, k, N — k) is gotten from Tukey’s
table for the studentized range. In this case k=4, n =5, N =20, and MSj,= 0.00086.
So HSD = ¢q(a, 4, 16) 0.01311. We take o = 0.05 and from the table get ¢ =4.05. So
HSD =0.0531. So we can reject the hypothesis that the two means are equal if their
differences are 0.0531 or more. The mean differences are 0.018 for 4 minus B,
0.026 for A minus C, 0.058 for 4 minus D, 0.008 for B minus C, 0.040 for B minus
D and 0.032 for C minus D. Note that only 4 minus D gives a value greater than
HSD. So we conclude that D is less than A but cannot be confident about a differ-
ence between any other pairs.
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Chapter 14

14.1 First let us look at the two sample ¢ test. The control group mean is 1687.4
and the treatment group mean is 1255.9. The pooled estimate of the standard devia-
tion is 1073.075.

The ¢ statistic is (X, — )_(,)/(Sp\/%), where 7 is the sample size in each group.
Since n =10, S, = 1073.75, and the mean difference is 614.325, r = 0.8992. This is
not significant for a # with 18 degrees of freedom. Now consider the Wilcoxon test.
We may see different results because the distributions are very nonnormal. Consid-
er the following table:

Control Group Pigs Treatment Group Pigs
Value (Pooled Rank) Value (Pooled Rank)
786 (8) 743(6)

375 (1) 766 (7)

3446 (19) 655 (5)
1886 (14) 923 (11)
478 (3) 1916 (15)
587 (4) 897 (9)
434 (2) 3028 (18)
3764 (20) 1351 (12)
2281 (16) 902 (10)
2837 (17) 1378 (13)
Sample Mean = 1687.4 Sample Mean = 1255.9
Rank sum = 104 Rank sum = 106

The rank sum for the first sample is 104 and the rank sum for the control group and
the treatment group is 106. They are virtually the same. Both tests lead to the same
conclusion. The two-sided p-value for the ¢ test is close to 0.40. For the Wilcoxon
test it is 0.97 for the two-sided p-value and 0.38 for the ¢ test (based on SAS results).
The p-values are similar.

14.3 We consider the following table:

Daily Temperatures for Two Cities and Their Paired Differences

Philadelphia New York Rank of
Mean Mean Paired Absolute
Temperature ~ Temperature Difference  Absolute  difference
Day (°F) (rank) (°F) (rank) #1-+#2 Difference (sign)
1 (January 15) 31 38 -7 7 11.5(-)
2 (February 15) 35 33 2 2 3(+H)
3 (March 15) 40 37 3 3 5(+)
4 (April 15) 52 45 7 7 11.5(+)
5 (May 15) 70 65 5 5 8.5(+)
6 (June 15) 76 74 2 2 3(+)

(continued)
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Philadelphia New York Rank of
Mean Mean Paired Absolute
Temperature ~ Temperature Difference  Absolute  difference
Day (°F) (rank) (°F) (rank) #1-+2 Difference (sign)
7 (July 15) 93 89 4 4 6.5(+)
8 (August 15) 91 85 6 6 10 (+)
9 (September 15) 74 69 5 5 8.5(1)
10 (October 15) 55 51 4 4 6.5 (+)
11 (November 15) 26 25 1 1 1(+)
12 (December 15) 26 24 2 2 3(+)

For the paired ¢ test, we have a mean difference of 2.833. The standard deviation of
the differences is S = 3.589 and the ¢ statistic is # = 2.833/1.036 = 2.734. This is a
Student ¢ with 11 degrees of freedom under the null hypothesis. For a two-sided
0.02 significance level, the critical ¢ is 2.718. So since 2.734 > 2.718, the p-value is
less than 0.02.

The sum of the negative ranks is only 11.5, whereas the sum of the positive
ranks is 66.5. If the null hypothesis were true, we would expect these ranks to be
approximately equal at around 39. The null hypothesis is clearly rejected in this
case. We get an approximate p-value by using the normal approximation, Z =
(11.5-39)/V/(2n + 1)(39)/6, where n = 12 is the number of pairs. So Z =
—27.5/N25(39)/6 = —-27.5/12.75 = -2.157. This is a one-sided p-value of 0.5 —
0.4845 = 0.0155 or two-sided p = 0.031. This agrees closely with the result for the
paired ¢ test.

14.9 We use the following table:

Aggressiveness Scores for 12 Identical Twins

Twin #1 1st born Twin #2 2nd born

Aggressiveness (rank) Aggressiveness (rank) Term
Twin Set [square of rank] [square of rank] Rank Pair  R(X)R(Y))
1 85 (8) [64] 88 (10) [100] (8, 10) 80
2 71 (3.5) [12.25] 78 (7) [49] (3.5,7) 24.5
3 79 (6.5) [42.25] 75 (5.5) [30.25] (6.5,5.5) 35.75
4 69 (1) [1] 64 (2.5) [6.25] (1,2.5) 2.5
5 92 (12) [144] 96 (12) [144] (12, 12) 144
6 72 (5) [25] 72 (4) [16] 5,4 20
7 79 (6.5) [42.25] 64 (2.5) [6.25] (6.5,2.5) 16.25
8 91 (11) [121] 89 (11) [121] (11.5,11) 126.5
9 70 (2) [4] 62 (1) [1] 2,1 2
10 71 (3.5) [12.25] 80 (9) [81] (3.5,9) 315
11 89 (10) [100] 79 (8) [64] (10,8) 80
12 87 (9) [81] 75 (5.5) [30.25] 9,5.5) 49.5
Total [sum of [649] [649] 612.5

squared ranks]
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Recall that the rank correlation is given by the following formula:

” n+1\2
;R(Xi)R(m—n( > )

[Z’:R(X;)z - n(n er 1 )2}”2[2&)’,-)2 - (n er 1 )2]1/2 (147

where 7 is the number of ranked pairs, R(X;) is the rank of X;, and R(Y) is the rank
of Y.

The numerator is 612.5 — 12 (13/2)? = 612.5 — 507 = 105.5. The terms in the de-
nominator are (649 — 507)'/? and (649 — 507)'/%. So p,, = 105.5/(649 — 507) =
105.5/142 = (0.743 a strong positive relationship.

psp =

Chapter 15

15.2 S@|t) = P{T>t,JT>t,} =P{T>t, N T>t,}/P{T > t}. Since t, > t,,
the event T > ¢, is contained in the event 7 > ¢,. Therefore P{T >t, N T > t,} =
P{T> t,}. So S(t,|t)) = P{T > t,}/P{T > t,} = exp(At,)/exp(At;) = exp(At, — At)) =
exp[A(f, — 1))

15.4 We get the expected and observed numbers for the chi-square test from the
following table:

Number of Number Number

Events at at Risk in at Risk in

Event Time Group 1 Group 2

Event Time, T (d) (ny) (ny) E, E,

7.5 1 6 6 0.5000 0.5000
12 1 5 6 0.4545 0.5455
16 1 4 6 0.4000 0.6000
31 1 3 6 0.3333 0.6667
55 1 2 5 0.2857 0.7143
60 1 1 5 0.1667 0.8333
61 1 1 4 0.2000 0.8000
65 1 0 4 0.0000 1.0000
92 1 0 1 0.0000 1.0000
Total — — — 2.3402 6.6598

Now for the chi-square, we have the observed number of 5 events for group 1 and
5 events for group 2. So x*> = (5 — 2.3402)%/2.3402 + (5 — 6.6598)%/6.6598 =
3.437. This does not quite reach the 5% level of significance. The distributions do
appear to differ by inspection, but the sample size is small (only 5 events in each

group).
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15.6 a. We generate the Kaplan—Meier curve using the following table:

Number Number of Number  Estimated Estimated Estimated
Time of Deaths, Withdrawals, at Risk, Proportion of Proportion  Cumulative
Interval D; w. n; Deaths, g;  Surviving, p; Survival, S(z)

J J j
t;=3.0 1 0 8 0.125 0.875 0.875
th,=4.5 1 0 7 0.143 0.857 0.750
t;=6.0 1 0 6 0.167 0.833 0.625
t,=11.0 1 0 5 0.200 0.800 0.500
ts=18.5 1 0 4 0.250 0.750 0.375
ts=20.0 1 0 3 0.333 0.667 0.250
t;,=28.0 1 0 2 0.500 0.500 0.125
t3=36.0 1 0 1 1.000 0.000 0.000

b and c. For the negative exponential, S(¢) = exp(—Af) and we estimate time be-
tween failures 1/A from the data as total time on test divided by the total number
deaths=(3.0+4.5+6.0+11.0+18.5+20.0 +28.0 + 36.0)/8 = 127/8 = 15.875. So
the estimate for A = 1/15.875 = 0.063.

Estimated

Cumulative

Estimated ~ Estimated Survival ()

Number  Number of Number Proportion Proportion for Negative

Time of Deaths, Withdrawals, atRisk, of Deaths, Surviving, Exponential
Interval D; 4 n; q; D and (KM)
t,=3.0 1 0 8 0.125 0.875 0.828 (0.875)
t,=4.5 1 0 7 0.143 0.857 0.753 (0.750)
t;=6.0 1 0 6 0.167 0.833 0.685 (0.625)
t,=11.0 1 0 5 0.200 0.800 0.500 (0.500)
ts=18.5 1 0 4 0.250 0.750 0.312 (0.375)
ts =20.0 1 0 3 0.333 0.667 0.284 (0.250)
t;=28.0 1 0 2 0.500 0.500 0.171 (0.125)
ts=36.0 1 0 1 1.000 0.000 0.104 (0.000)
TTT=15.875

d. This exponential model seems to reasonably fit the data.

15.8 Here we change the events at times 6.0, 18.5, and 28.0 to censored times
rather than event times. The corresponding Kaplan—Meier table looks as follows:

Number Number of Number  Estimated Estimated Estimated
Time of Deaths, Withdrawals, at Risk, Proportion of Proportion  Cumulative
Interval D; 4 n; Deaths, g;  Surviving, p; Survival, S(z)

J J J
t,=3.0 1 0 8 0.125 0.875 0.875
th=4.5 1 0 7 0.143 0.857 0.750
;=110 1 1 5 0.200 0.800 0.600
1,=20.0 1 1 3 0.333 0.667 0.400
ts=36.0 1 1 1 0.500 0.500 0.200
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